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ABSTRACT

Newell, Andrew Ph.D., Purdue University, August 2014. Achieving Resilient Net-
works with Diversity and Network Coding. Major Professor: Cristina Nita-Rotaru.

This dissertation provides strong resilience techniques applying to general net-

works. Examples of important networks are private wired networks connecting large

datacenters, overlay topology networks delivering live television broadcasts, and wire-

less mesh networks rapidly set up after a disaster to replace existing damaged in-

frastructure. Given the trends of increased reliance on networks and capabilities of

attackers, network security is vital to national security. Network attacks can be char-

acterized along the two dimensions of access and motivation. Attacker access can

be either as an insider or outsider. An insider has more capabilities of having full

control of some routing nodes. Attacker motivation can be targeting confidentiality,

data integrity, or availability where availability is the only one that cannot typically

be dealt by the known cryptographic techniques of encryption, digital signatures, or

message authentication codes. In this dissertation, we focus on insider attackers that

attack the availability of the network.

Our first step towards resilience is to ensure that an attacker cannot compromise

nodes that partition the network since such an attack trivially succeeds in preventing

availability. Such large compromises are likely in today’s typical network deployment

where all routers have identical components and a single successful exploit can be

repeatedly used against all routers in the network. In our work, we demonstrate how

diversity alleviates such problems when assigning diversity optimally to routers in the

network. Routers that are diverse enough to not permit common exploits must have

different components such as hardware, operating systems, routing code, and even

administrators. These types of diversity are limited, so our assignment of diversity to
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routers typically has very few variants which must be assigned to a large number of

routing nodes. We provide a comprehensive study of diversity assignment in networks

by proposing problems for various network goals, techniques to solve these problems

optimally or at scale, and demonstrated benefits of applying such analysis to real

topologies.

Diversity ensures that a network remains well-connected by honest nodes even

after sophisticated compromise attempts. However, an attacker can still succeed

in attacking availability by attacking the routing protocol. We provide techniques

resistant to insider attacks when using network coding. Network coding offers higher

performance in a network by performing encoding techniques on packets. Insiders

can attack the encoding technique in two ways by either forcing incorrect decoding

or delaying decoding. For pollution attacks, forcing incorrect decoding, our work

proposes a new defense against pollution attacks overcoming limitations of prior work

which includes expensive security computation at routers, communication overhead

that scales with the number of insiders, and delayed verification. For entropy attacks,

delaying decoding, to the best of our knowledge our work is the first to demonstrate

the effectiveness of such attacks along with considering defenses for sophisticated

entropy attackers which collude.
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1 INTRODUCTION

We improve resilience to malicious insider routers (i.e., byzantine resilience) along

two dimensions. Firstly, we study how to best utilize diversity within a network

to ensure that compromises which target a particular attack surface cannot cripple

an entire network by repeating the attack against numerous homogeneous nodes.

Network diversity is the use of different components such that they are vulnerable in

different ways. Secondly, we consider strengthening the security of network coding

protocols to ensure they are practical in a network with untrusted routers. These two

dimensions are orthogonal as there are situations where only diversity may be applied

or strengthened network coding protocols could be applied. They both work towards

a common goal of network resilience and work well in conjunction to significantly

boost the resilience of a network. Here we provide background on both of these areas.

Byzantine Resilient Network Diversity. As a first major step towards byzan-

tine resilience, we want to ensure a surviving network remains after sophisticated

router compromise attempts by attackers. A router in the network has many attack

surfaces such as the routing code, the operating system of the router, the administra-

tion, or the cloud service provider providing the router. If an attack is found against

one of these attack surfaces, and the network consists of homogeneous routers, then

the entire network can be compromised. In this case, any resilience gained by a

byzantine tolerant protocol are meaningless despite the use of a sophisticated byzan-

tine tolerant protocol.

For these types of diversity, its common to have only a few diverse variants avail-

able for use. Networks have numerous routing nodes which need a variant, so there

is a problem of how to assign this diversity. By spreading it evenly, you are ensuring

a portion of the network survives an attack. This is not sufficient for good connec-

tivity, since the remaining structure of the network may not be well connected. So,



2

we study how to assign diversity such that the network remains well connected even

after portions of the network are compromised due to vulnerable variants.

Byzantine Resilient Protocols with Network Coding. In scenarios of attack

where routers are compromised, our diversity techniques ensure a strong surviving set

of nodes is not compromised. For a holistic defense, we must also be able to perform

routing over a set of honest nodes despite malicious nodes actively attempting to

disrupt routing. As opposed to byzantine resilience with traditional best path routing,

we focus on byzantine resilience with network coding for two main reasons. First,

through encoding data at the routers, network coding achieves higher performance

than simple best path routing by leveraging the coding capabilities of intermediate

routers. Second, network coding has inherent resilience advantages compared with

typical best path routing as data can be delivered along multiple paths, so if one

path is blocked by an adversary then the remaining paths still deliver data without

interruption.

In network coding systems, intermediate routers are supposed to alter packets to

perform their coding which makes various security tasks much more difficult. An

attacker can subvert a coding system by crafting packets to ensure ensure the final

decoding results are corrupted data (pollution attack) or the crafted packets provide

no information for decoding (entropy attack). More research is needed to defend

against these attacks without imposing significant overhead.

1.1 Our Contributions

This dissertation advances the state-of-the-art in byzantine tolerant networks in

both aspects of network diversity and byzantine resilient network coding.

Existing work offers numerous techniques to diversity systems [1–4] by creating

different versions that fail in different ways. However, no existing work addresses how

to spread such diversity across a network ensuring important networking goals such as
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connectivity. We call this spreading of diversity an assignment of diversity to routing

nodes. We motivate and investigate this new area with the following contributions:

• Define specific diversity assignment optimization problems matching different

networking needs.

• Show how to express these problems as Mixed Integer Programs to solve these

problems optimally. For large-scale problems, we also provide heuristics to solve

at scale achieving close to an optimal assignment.

• Demonstrated practical benefits on a real global cloud network topology.

Existing work has demonstrated performance benefits of disseminating data with

network coding [5–14] which is why we envision such protocols for the network de-

mands of critical services. We aim to leverage these performance benefits while ad-

dressing key security concerns of using network coding. Namely, the difficulties in pre-

venting intermediate routers from modifying packets to result in incorrect decoding

(pollution attacks) or useless information (entropy attacks). Preventing modification

is straight-forward in traditional networks without network coding as classical cryp-

tographic integrity measures can be applied ensuring untrusted routers do not alter

data in packets. However, in networks with network coding, the untrusted routers

must alter packet data to perform coding operations.

We advance defenses against those pollution attacks that aim to ensure decod-

ing fails which have been well-studied problem in network coding [15–26]. Many of

these works provide valid defenses, but they impose such great overhead in terms

of communication and computation that network performance is worse than a more

simplistic best path routing protocol that enforces digital signatures. As the aim

of utilizing network coding is increased performance, it is our goal to maintain that

performance improvement over traditional best path routing protocols even in secure

settings. Thus, our focus is to ensure a practical overhead while still ensuring strong

security guarantees. We meet this goal by creating a defense based on properties of

null spaces. We contribute a pollution defense with the following contributions:
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• We overcome limitations of existing work by using cheap dot product computa-

tions for verifying packets, fixed overhead independent of the number of insiders,

and do not enforce any delays on forwarders to verify packets.

• We provide detailed security analysis to prove our scheme is resilient to any

number of insiders that can overhear any traffic sent through the network.

• Through simulation experiments, we are able to demonstrate the performance

benefits of our scheme compared to existing work.

We also provide needed research for the other important attack against network

coding, entropy attacks. These do not cause decoding to fail instead just delay de-

coding by crafting packets with useless information. To our knowledge one work

mentions such an attack [27] while another work aims to lessen the computational

overhead during such an attack [28]. Both works do not study the potential impact of

an attack on the overall network performance nor explore the full potential of attacks.

We explore this area from both an attack and defense perspective:

• Through simulations we show the severity of entropy attacks on the performance

of a network coding system.

• We demonstrate how an attacker can create packets that look useful locally, but

somewhere downstream they are actually useless to a network. We call this a

global entropy attack, and it subverts most straight-forward defenses that only

use local information.

• We propose two defenses with different constraints and needs that are capable

of mitigating the stealthier global entropy attacks. We analyze the effective-

ness and overhead these two defenses which shows the important trade-offs for

choosing an appropriate defense for a network.
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1.2 Organization

We organize this dissertation as follows. Chapter 2 contains our work on network

diversity which first appeared in [29]. Chapter 3 contains our proposed pollution

defense which first appeared in [30]. Chapter 4 contains our work on entropy attacks

and defenses which first appeared in [31]. We cover all related work to this dissertation

in Chapter 5. We conclude the dissertation in Chapter 6.
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2 INCREASED NETWORK RESILIENCE BY ASSIGNING DIVERSE

VARIANTS TO ROUTING NODES

Networks with homogeneous routing nodes are constantly at risk as any vulnera-

bility found against a single routing node could be used to compromise all nodes.

Diversity can be employed at various levels on the routing nodes to address this

problem by improving resiliency against different classes of attacks. In this chapter,

we base resiliency on the number of surviving client-to-client connections offered by

the network when under attack. Diversifying the operating system provides protec-

tion against common types of attacks that target operating system vulnerabilities [1];

utilizing multi-variant programming protects against programming vulnerabilities or

logical programming errors [2, 3]; using different administrative personnel mitigates

social engineering or insider attacks [4] However, there are only a limited number of

operating systems, software versions, and personnel to utilize as diverse variants. So

then, how does one assign these limited number of diverse variants to the routing

nodes in the network to achieve optimal resiliency?

Initially, we assumed that a random assignment of a few diverse variants would

perform well. However, we found that a random assignment performs rather poorly, in

many cases providing less resiliency than using the best single variant at all routing

nodes, and occasionally even less resiliency than using the worst single variant at

all routing nodes. Clearly, a better approach is necessary to realize the benefits of

diversity.

Our interest in the assignment of few diverse variants to networks arose from con-

structing a cloud service over a global network of data centers [32]. We needed to have

an intrusion-tolerant infrastructure in order to monitor and control the cloud even

in the case of sophisticated intrusions. While designing intrusion-tolerant protocols

for messaging and maintaining consistent state, we realized that without diversity all
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the nodes could be compromised by a single vulnerability. Inspired by prior work on

diversity [1], we were especially interested in diversifying the operating system (e.g.,

Linux, MacOS, and FreeBSD). The additional overhead of managing multiple oper-

ating systems within the cloud infrastructure led us to consider only a small number

of variants to create diversity.

In this chapter, we demonstrate that the way diverse variants are assigned across

the network (i.e., which variant is assigned to which routing node) is of utmost im-

portance to the overall network resiliency when the number of variants is smaller

than the number of routing nodes in the network. To our knowledge, our work on

diversity is the first to study the impact of variant assignment to routing nodes on

overall network resiliency.

We define a new problem, the Diversity Assignment Problem (DAP), which spec-

ifies how to optimize overall network resiliency when placing diverse variants that are

compromised independently at routing nodes, and we present novel solutions to solve

this problem. While DAP is NP-Hard, we show that it is feasible to solve it opti-

mally on a variety of medium-size random network graphs. We also show an efficient

algorithm that approximates DAP well for larger graphs, incurring a relatively small

resiliency cost compared with the optimal solution.

To check the applicability of our approach in a real-world setting, we obtained

a network graph representative of the global overlay topology used by LTN. Even

though this topology was constructed with high availability as the goal (rather than

intrusion-tolerance), the optimal variant assignment solution to the DAP ensures a

system resiliency that is significantly higher than the resiliency achieved by any of

the individual variants.

In real-life settings, routing nodes may be added from time to time to meet in-

creasing system demands. Calculating an optimal solution for the extended network

is certainly feasible. However, that solution is likely to require variant re-assignment

for many of the existing routing nodes, which may not be feasible in a 24/7 service as

downtime for re-configuring nodes is unacceptable. We present an online version of
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DAP that finds the optimal incremental assignment. When applied to the mentioned

global topology, we discover that an important trade-off exists between the resiliency

the system achieves and how often the network changes.

We initially choose an application agnostic metric for network resiliency that cap-

tures the expected client-to-client connectivity between all pairs. We investigate

the advantages of considering the specific resiliency needs defined by the nature of

a distributed application running at the clients. Specifically, we show how to find

the optimal assignment for the underlying network supporting either the Paxos [33]

or Byzantine Fault-Tolerant (BFT) [34] protocols. When applied to the mentioned

global topology, we found that an assignment that is tailored to these application re-

quirements can provide higher resiliency than an assignment that focuses on general

network resiliency obtained by maximizing the expected client-to-client connectivity.

Furthermore, we show how to optimize for a weighted resiliency metric for use as a

resiliency metric. Such an optimization offers the ability to designate specific client

pairs with higher importance such that the assignment prioritizes these client pairs

by offering them higher resiliency.

Our assignments are based on assumptions of correct information about compro-

mise probabilities, so we finally investigate the effect of performing an assignment

based on incorrect information. We observe two bad effects of using incorrect infor-

mation. First, an assignment based on incorrect information will have worse resiliency

than an assignment based on correct information. Second, a network operator’s con-

fidence in the overall resiliency of a network is incorrect if information about compro-

mises is incorrect.

When studying DAP, we learned three key points that are relevant to any appli-

cation of limited diversity that aims to increase network resiliency:

1. A high level of overall network resiliency can be obtained even from variants

that are weak on their own. Despite the variants being compromised (inde-

pendently) with a relatively high probability, they are compromised in different
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ways. Carefully assigning variants to routing nodes allows surviving subsets of

the network to still remain highly connected.

2. The simplest and seemingly practical approach of just assigning variants ran-

domly offers very low resiliency compared to the optimal assignment. Addition-

ally, in many random placements we found that the resiliency of the network

is actually worse than if no diversity assignment were used at all. To provide

further understanding we investigated the proportion of search space that has

solutions near the optimal, finding that a very small fraction of the search space

has resilience values within a few factors of the optimal solution.

3. While optimizing expected client-to-client connectivity provides a good measure

for the resiliency of the network to intrusions, considering application-specific

connectivity requirements may lead to a different assignment that maximizes

overall system resiliency (as opposed to network resiliency) for that application

on that network.

The contributions described in this chapter are as follows:

• We introduce DAP and formulate it using Mixed Integer Programming (MIP)

[35] and find the optimal solution on random graphs constructed in a manner

reminiscent of real overlay topologies. To support larger graphs, we extend this

formulation to a fast greedy approximation and demonstrate results that are

relatively close to the optimal solution in such larger graphs.

• We analyze the impact of diversity on a real cloud overlay topology and extend

our approach to support adding routing nodes to the graph in an online manner

to address increased client demand.

• We extend our approach to optimize network resiliency for a given applica-

tion’s demands, rather than for overall expected client-to-client connectivity, to

maximize system resiliency.
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• We extend our approach to prioritize optimization for specific client-to-client

connections such that the assignment offers higher resiliency to certain connec-

tions while sacrificing resiliency of other connections.

• We analyze the loss in resiliency when optimally assigning variants based on

incorrect information about compromises.

The rest of the chapter is organized as follows. Section 2.1 describes our network

and adversarial models. Section 2.2 presents the general DAP along with an optimal

solution. Section 2.3 describes and evaluates a greedy approximation algorithm to

solve DAP in larger topologies. Section 2.4 shows how resiliency is affected in dynamic

topology scenarios. Section 2.5 shows the increased advantage of performing diversity

assignment with client application knowledge. Section 2.6 shows how to convert DAP

to prioritize specific client pairs. Section 2.7 analyzes how incorrect compromise

information affects assignment. Section 2.8 summarizes this chapter.

2.1 Network Diversity Model

We describe the model of the network and attacker which we consider in this

work. These models are quite general as our approaches can be applied in a variety

networking contexts with various of diversity techniques. Our motivation started with

a scenario of cloud services being provided over a global network of datacenters while

diversifying operating systems for improved resilience, but we noticed that the core

problem is general to any network.

2.1.1 Network Model

We assume a network topology of routing nodes that provide communication to

clients. We assume no control over the structure of the network topology as this

is fixed based on the constraints of the networking context. In an overlay routing

context, network links impose overhead to continuously monitor their latency and



11

loss characteristics, thus the degree at each node must be limited while ensuring the

entire network is still well connected. Alternatively, in a wireless context, network

links are limited by the physical broadcast range of each node. We assume that

we have a set of diverse variants and can configure each routing node with a single

variant. Our network goals are to maximize the number of client connections or an

application-specific communication requirement of the clients.

2.1.2 Adversarial Model

We assume that there is no way to configure a routing node that meets our net-

work needs while being completely invulnerable to attacker attempts of compromise.

Thus, we adopt a probabilistic adversarial model that captures the following impor-

tant resilience property of diversity we wish to leverage: even though we do not have

access to a variant that cannot be compromised, we do have access to variants that

are compromised in different ways. We assign a probability that an attacker is able

to both find a vulnerability and create a successful exploit against a variant within

a given time period, and then any routing node in the network with this variant will

become compromised. As our probabilities are with respect to a certain time frame, a

full long-term system needs mechanisms to detect and recover compromised variants,

and we consider such mechanisms as outside the scope of this current work. Our

probabilistic model of compromise offers a useful way to reason about an attacker’s

capabilities and measure a network’s resilience. Even in realistic scenarios where an

attacker is not modeled well probabilistically, we are still raising the bar for the at-

tacker to ensure the attacker must find vulnerabilities and create exploits for different

variants of routing nodes.

We do assume a byzantine tolerant routing protocol is used for routing to ensure

that communication can occur between two clients as long as an honest path of routing

nodes exists.
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2.2 Diversity Assignment

In this section we present the Diversity Assignment Problem (DAP). DAP de-

scribes how to assign diversity to routing nodes in order to maximize the probability

of each client pair being connected. We then describe existing Mixed Integer Pro-

gramming (MIP) techniques and how these can be used to solve DAP. Lastly, we show

the effectiveness of this technique on a realistic case study topology when compared

with randomly assigning diversity.

2.2.1 Diversity Assignment Problem (DAP)

We consider a network consisting of a set of nodes N and a set of clients M . We

use the terms node and routing node interchangeably throughout this chapter as they

both correspond to routers in a network. A set of connections are defined among nodes

and clients, so we can represent a network as a graph such as the one in Figure 2.1 and

Figure 2.2 where clients are squares and nodes are circles in the graph. We assume no

connections between clients which is the typical case in network topologies. However,

such connections would pose no serious issue to our model or the solutions we present

later. Each node is assigned a variant from the set of variants V , so there are |V ||N |

possible assignments. We denote an assignment of one variant for each node as A.

Note that |V | < |N |. Each variant vk ∈ V is associated with a compromise event ek

in the set of all compromise events E, so |E| = |V |. The probability of ek occurring

is P (ek). These events of compromise are independent,1 so for any two compromise

events ek′ and ek′′ the following holds P (ek′ ∩ ek′′) = P (ek′) ∗ P (ek′′).

We measure the goodness of an assignment of variants with the metric expected

client connectivity. This metric is the expected value of the proportion of client

pairs that are connected. To compute this value we consider the set of all possible

1We make an assumption of independence among compromise events in this work as this simplifies
the presentation of the fundamental ideas in this work. However, as long as compromise events are
not highly positively correlated (i.e., when one compromise event occurs then others are highly likely
to happen), then all of our techniques and results still hold even though compromise events may not
be completely independent.
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combinations of compromise events C where |C| = 2|E| (C is the powerset of E).

An element c ∈ C is a subset of the compromise events, E, and corresponds to

those compromise events occurring while any other compromise events do not occur.

We can compute the proportion of clients connected given that those variants are

compromised. We consider two clients to be connected if a path of non-compromised

nodes exists between them.

Our goal is to maximize the expected client connectivity of a graph by strategically

assigning variants. We call this problem the Diversity Assignment Problem.

Definition 2.2.1 The Diversity Assignment Problem is to find the assignment of

variants to nodes which maximizes the expected client connectivity. First, for a given

assignment A and set of compromised variant events c ∈ C, we define a connectivity

function fA,c(a, b) between two clients a and b as:

fA,c(a, b) =



(|M |
2

)−1
if clients a and b are connected

by a set of non-compromised nodes

0 otherwise

Then, the expected client connectivity is:

E

 ∑
{a,b∈M :a<b}

fA,c(a, b)

 =
∑
c∈C

∏
ek∈c

P (ek)
∏
ek /∈c

(1− P (ek))

 ∗
 ∑
{a,b∈M :a<b}

fA,c(a, b)


The Diversity Assignment Problem is:

argmaxA

E
 ∑
{a,b∈M :a<b}

fA,c(a, b)


As an illustrative example of the meaning of DAP we show Figures 2.1 & 2.2

as two ways to assign variants to an example topology. The three clients (squares)

are connected through nodes (circles) by the shown lines. There are three client

pairs for the three clients, and we describe how the expected client connectivity is

calculated in each assignment. The variants are red and blue which have probabilities
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Figure 2.1.: Diversity assignment with
0.838 expected client connectivity on
example topology.

Figure 2.2.: Diversity assignment with
0.957 expected client connectivity on
example topology.

of being compromised of 0.1 and 0.15 respectively. For the assignment in Figure 2.1,

3 client pairs are connected when neither variant is compromised which happens

with probability (1− 0.1 ∗ 0.15), 1 client pair is connected by the blue variant when

just the red variant is compromised with probability (1 − 0.1), and 1 client pair

is connected by the red variant when just the blue variant is compromised with

probability (1 − 0.15). The resulting expected client connectivity is the following

weighted sum 3
3
(1− 0.1 ∗ 0.15) + 1

3
(1− 0.1) + 1

3
(1− 0.15) = 0.838. For the assignment

in Figure 2.2, 3 client pairs are connected when neither variant is compromised which

happens with probability (1 − 0.1 ∗ 0.15), 3 client pairs are connected by the blue

variant when just the red variant is compromised with probability (1 − 0.1), and 2

client pairs is connected by the red variant when just the blue variant is compromised

with probability (1−0.15). The resulting expected client connectivity is the following

weighted sum 3
3
(1−0.1∗0.15)+ 3

3
(1−0.1)+ 2

3
(1−0.15) = 0.957. The second assignment

has an increased expected client connectivity since more client pairs are connected in

the scenarios where just one variant is compromised.

Theorem 2.2.1 The Diversity Assignment Problem is NP-Hard with two or more

variants.

Proof We show that 3-SAT is polynomial-time Turing-reducible to the Diversity

Assignment Problem. We will show that 3-SAT is solvable in polynomial-time if both
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the DAP is used as a subroutine and the DAP is solvable in polynomial-time. Our

proof is split into three parts (1) description of our transformation from a 3-SAT

problem to the DAP, (2) showing a 3-SAT solution implies a DAP solution, and (3)

showing a DAP solution implies a 3-SAT solution.

Transformation from 3-SAT to DAP. First we denote the variables for the

input boolean expression of the 3-SAT as β1, β2, ..., βs. Then, we denote the boolean

expression as (β
λ1,1
γ1,1 + β

λ1,2
γ1,2 + β

λ1,3
γ1,3 )(β

λ2,1
γ2,1 + β

λ2,2
γ2,2 + β

λ2,3
γ2,3 )...(β

λt,1
γt,1 + β

λt,2
γt,2 + β

λt,3
γt,3 ). For all

i and j, γi,j is an index value, so 1 ≤ γi,j ≤ s. For all i and j, λi,j ∈ {T, F} where

F denotes the complement of the boolean variable while T does not. The 3-SAT

problem has s distinct variables and t clauses.

Let the DAP have two variants v1 and v2. Create 2s nodes denoted by xT1 , x
T
2 , ..., x

T
s

and xF1 , x
F
2 , ...x

F
s . These nodes will correspond to true and false boolean assignments

for the 3-SAT variables β1, β2, ..., βs.

Create 2t clients denoted by a1, a2, ..., at and b1, b2, ..., bt. For all i and j add the

following two edges (ai, x
λi,j
γi,j ) and (bi, x

λi,j
γi,j ).

Create 2s(t + 1) more clients denoted by a1,j, a2,j, ..., as,j and b1,j, b2,j, ..., bs,j for

all j such that 1 ≤ j ≤ t + 1. For all i and j add the following four edges (ai,j, x
T
i ),

(bi,j, x
T
i ), (ai,j, x

F
i ), and (bi,j, x

F
i ). Note that for a given i the clients ai,j and bi,j for

all j are equivalent in terms of their connections, and each i corresponds to variable

in the 3-SAT problem.

Create nodes denoted by yT1 , y
T
2 , ..., y

T

((|M|2 )− |M|2 )
and yF1 , y

F
2 , ..., y

F

((|M|2 )− |M|2 )
. So far,

all clients have been created in pairs ( |M |
2

of these pairs), and we use these y nodes

to connect all remaining pairs. We add the following four edges for every client pair

a, a′ that is not meaningful, (a, yTi ), (a′, yTi ), (a, yFi ), and (a′, yFi ) such that a different

i is used for each pair a, a′.

The last step in the construction is the selection of the compromise event probabil-

ities P (e1) and P (e2) along with the the desired minimum expected client connectivity

that must be found by the DAP to ensure a 3-SAT solution exists. We consider three

types of client pairs which together make up all possible client pairs. We consider the
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Figure 2.3.: DAP construction to solve the 3-SAT problem, (β1 + β̄2 + β4)(β̄1 + β7 +
βs)...(β̄8 + β9 + βs). Note that the y nodes are not included in this diagram.

DAP solved if we find an ECC greater or equal to the following desired value Γ where

Γ =
((|M|2 )− |M|2 )

(|M|2 )
(1−P (e1)P (e2)) + s(t+1)

(|M|2 )
(1−P (e1)P (e2)) + t

(|M|2 )
(1−P (e1)). Also, we

must ensure that e1 is significantly stronger than e2 in terms of resilience by ensuring

P (e1) <
P (e2)

t+P (e2)−tP (e2)
.

3-SAT solution implies a DAP solution. Given an assignment of true and

false to the 3-SAT variables β1, β2, ..., βs, we show there is a DAP assignment with

ECC greater than or equal to Γ. For each 1 ≤ i ≤ s, if βi is true let xTi be as-

signed e1 while xFi be assigned e2, and for βi switch this assignment. Assign e1 to

yT1 , y
T
2 , ..., y

T

((|M|2 )− |M|2 )
and e2 to yF1 , y

F
2 , ..., y

F

((|M|2 )− |M|2 )
.

Now we sum up different portions of the total ECC. First, since each 3-SAT

variable is true or false, those 2s(t+1) client pairs a1,j, a2,j, ..., as,j and b1,j, b2,j, ..., bs,j

for all 1 ≤ j ≤ t+1 are connected by both variants attributing s(t+1)

(|M|2 )
(1−P (e1)P (e2))

to the ECC. Second, each clause of 3-SAT is satisfied, those client pairs a1, a2, ..., at
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and b1, b2, ..., bt are connected by at least the variant e1 attributing t

(|M|2 )
(1−P (e1)) to

the ECC. Finally, every remaining client pair is connected by both variants through

the y nodes attributing
((|M|2 )− |M|2 )

(|M|2 )
(1 − P (e1)P (e2)) to the ECC. The sum of those

three expressions is Γ which is the minimum desired ECC for a correct DAP solution.

DAP solution implies a 3-SAT solution. Given an assignment to DAP with

an ECC greater than or equal to Γ we show a 3-SAT assignment exists. There are a

total of
(|M |

2

)
client pairs where |M | = 2s(t + 1) + 2t. View ECC as a sum of values

from each client pair, and that value for a pair is 1−P (e1)

(|M|2 )
when connected by just

variant 1, 1−P (e2)

(|M|2 )
when connected by just variant 2, or 1−P (e1)P (e2)

(|M|2 )
when connected

by both variant 1 and 2.

We start by showing show that each 3-SAT boolean variable β will have only one

of β, β̄ be true. From our transformation, this is equivalent to all those 2s(t + 1)

client pairs a1,j, a2,j, ..., as,j and b1,j, b2,j, ..., bs,j for all 1 ≤ j ≤ t + 1 being connected

by both variants. We show this with a contradictory argument by assuming some

(ai,j, bi,j) pair which is only connected by a single variant. The existence of this

single pair implies that at least t + 1 pairs (ai,1, bi,1), (ai,2, bi,2), ..., (ai,t+1, bi,t+1) are

only connected by a single variant as these t + 1 client pairs have the same links to

the same nodes. At best, these t + 1 pairs contribute (t+1)(1−P (e1))

(|M|2 )
which imposes

an upper-bound on the final ECC of
(|M|2 )−(t+1)

(|M|2 )
(1 − P (e1)P (e2)) + t+1

(|M|2 )
(1 − P (e1)).

This upper-bound is strictly less than Γ which contradicts our assumptions. Thus,

we conclude that those 2s(t+ 1) client pairs are indeed connected by both variants.

It remains for us to show that each clause has at least one true value. From our

transformation, the 3-SAT clause constraints are equivalent to those t client pairs

a1, a2, ..., at and b1, b2, ..., bt being connected by at least variant 1. We show this

with a contradictory argument by assuming some (ai, bi) pair which is connected by

only variant 2. This puts an upper-bound on the ECC of
(|M|2 )−1
(|M|2 )

(1− P (e1)P (e2)) +

1

(|M|2 )
(1 − P (e2)) from those t client pairs resulting in an upper-bound on the total
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ECC of
(|M|2 )−t
(|M|2 )

(1− P (e1)P (e2)) + t

(|M|2 )
(1− P (e2)4). We have the following from our

selection of probabilities values:

P (e1) <
P (e2)

t+ P (e2)− tP (e2)

⇒ (t− 1)(1− P (e1)P (e2)) + (1− P (e2)) < t(1− P (e1))

⇒ t− 1(|M |
2

)(1− P (e1)P (e2)) +
1(|M |
2

)(1− P (e2)) <
t(|M |
2

)(1− P (e1))

With the above inequality, we can show the following inequality between the upper-

bound ECC and Γ.(|M |
2

)
− 1(|M |

2

) (1− P (e1)P (e2)) +
1(|M |
2

)(1− P (e2))

=

(|M |
2

)
− t(|M |

2

) (1− P (e1)P (e2)) +
t− 1(|M |

2

)(1− P (e1)P (e2)) +
1(|M |
2

)(1− P (e2))

<

(|M |
2

)
− t(|M |

2

) (1− P (e1)P (e2)) +
t(|M |
2

)(1− P (e1))

= Γ

Thus, we have a contradiction and must assume that all client pairs are connected by

variant 1.

Proof summary. We have shown that a correct 3-SAT assignment exists if and

only if a resulting DAP exists with with sufficient expected client connectivity. Thus,

the existence of an algorithm to solve DAP optimally in poly-time would imply an

algorithm to solve 3-SAT in poly-time.

2.2.2 MIP Approach to DAP

Despite DAP being NP-Hard, many real-world network topologies are of limited

size, so finding the optimal solution is of practical interest. To find the optimal solu-

tion, we chose to formulate the problem as a MIP and utilize an existing commercial

solver, CPLEX [36]. A MIP is a linear program with the addition of integer con-

straints. The important implication of these integer constraints is that a MIP is not
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solvable in polynomial time (while a linear program can be), but these integer con-

straints allow for formulations of many difficult combinatorial problems. Problems

from other domains have also resorted to MIP to find optimal solutions to practical

problems in the area of operations research [37–39]. MIP formulations are good for

problems where the optimal is desired and no efficient algorithm is known as many

MIP solvers [36,40,41] employ a variety of techniques to avoid exhaustively searching

the entire space of feasible solutions.

Our MIP formulation is seemingly more complex than the mathematical formu-

lation in Definition 2.2.1 mainly due to the expression of the function fA,c(a, b) as a

MIP. This function’s output depends on whether two clients are connected given an

assignment and set of compromise events. In the MIP formulation we capture the

same connectivity by setting up flow variables on each edge. When considering a

specific source client, we count the number of other clients that are connected to this

source client with the following constraints on these flow variables. The source client

has no incoming flow and unbounded outgoing flow, each other client accepts at most

one unit of incoming flow and has no outgoing flow, and each non-compromised node

has equivalent incoming and outgoing flow. Compromised nodes have no incoming or

outgoing flow, and a node is compromised when the node’s variant assignment is in-

cluded in the set of compromised events being considered. With these flow variables,∑
{a,b∈M :a<b} fA,c(a, b) is equivalent to 1

2
∗
(|M |

2

)−1
multiplied by the total outgoing flow

of the given clients for |M | copies of the same graph and flow variables where each

graph considers a different source client. Then we must copy these variables again,

once for each possible set of compromise events.

Table 2.1 describes each symbol that we use in our MIP formulation. We present

the objective function (Equation 2.1) followed by each constraint (Equations 2.2-2.10).

DAP objective:

maximizes,f
1

2
∗
(
|M |

2

)−1
∗

∑
c∈C,a∈M,x∈N

∏
ei∈c

P (ei)
∏
ei /∈c

(1− P (ei))

 fc,a,a,x (2.1)
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Table 2.1: Notation for network diversity

Symbol Description

N Set of routing nodes. As our notation, these are x, y, z,

etc.

M Set of client nodes. As our notation, these are a, b, etc.

V Set of variants.

E Set of all compromise events. We index elements of E

and V by k as their elements are related such that each

ek corresponds to the compromise event of the variant vk.

C Set of all possible compromise event sets, so |C| = 2|E|.

Each element c ∈ C is a set of compromise events (e ∈ E)

that are compromised.

wi,j Constants designating that edge {i,j} exists. i and j

can be either routing nodes or client nodes. Note that

clients should not connect directly to other clients, so

i, j ∈M ⇒ wi,j = 0

fc,a,i,j Measures the amount of flow that starts at client node

a and travels on edge {i,j} in compromise event set c. i

and j can be either routing nodes or client nodes. Also,

c ∈ C. This must be a non-negative value.

sv,x The variant assignment of routing node x. sv,x is 1 if x

is variant v and 0 otherwise.

We maximize the expected client connectivity of the graph, over all compromise

events. The first term (1
2
∗
(|M |

2

)
) ensures that the result will be out of 1, rather than

out of the number of possible connections between clients. The two products ensure

that each possible compromise event is weighted by the probability that it happens.

The f term is a measure of how much flow the given client a can push out onto the
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network (specifically, fc,a,i,j measures the amount of flow that started at source client

a that travels on edge {i,j} in compromise case c). Because of all the constraints

below, this is exactly a measure of how many other clients client a can connect to.

Variant constraints (I):

svi,x = {0, 1}, vi ∈ V , x ∈ N (2.2)

Routing nodes must be either entirely of a variant or entirely not of that variant.

Fractional assignments are not allowed.

Variant constraints (II): ∑
vi∈V

svi,x = 1, x ∈ N (2.3)

Routing nodes must be exactly one variant.

Node flow constraints:∑
i∈N∪(M−{a})

fc,a,x,i −
∑

i∈N∪{a}

fc,a,i,x = 0, c ∈ C, a ∈M, x ∈ N (2.4)

The flow (originating at source client node a) entering routing node x must equal the

flow (originating at source client node a) exiting routing node x. This is enforced for

each of the |M | clients and for each of the |N | nodes, separately. In other words, flow

cannot get stuck in the middle of the network; it has to end at client nodes.

Client flow constraints (I):∑
x∈N

fc,a,x,b ≤ 1, c ∈ C, a, b ∈M, a 6= b (2.5)

A client cannot accept more than one unit of flow from another client. This is so that

we can count the total flow out of the source client to get the number of connected

clients. Despite this constraint being ≤ 1, it can only take a value of 0 or 1 due to the

other constraints and the objective. For the CPLEX solver [36], it is more efficient

to enforce fewer integer constraints whenever possible.

Client flow constraints (II):

fc,a,x,a = 0, c ∈ C, a ∈M, x ∈ N (2.6)
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Traffic cannot start and end at the same client. In other words, a client cannot send

to itself. Note that {x, a} is any incoming edge into a.

Client flow constraints (III):

fc,a,b,x = 0, c ∈ C, a, b ∈M, x ∈ N, a 6= b (2.7)

A destination client cannot send out flow. So, flow cannot use a client to reach other

clients.

Topology constraints:

fc,a,i,j ≤ (|M | − 1) ∗ wi,j, c ∈ C, a ∈M, i, j ∈ (N ∪M) (2.8)

Any pair of nodes with no edge between them (i.e., wi,j = 0) cannot have any flow

directly between them. It also underlines the fact that up to |M | − 1 units of flow

originating at the same client can share the same edge.

Variant flow constraints (I):

fc,a,x,i ≤ (|M | − 1) ∗min
ei∈C

(1− svi,x),

c ∈ C, a ∈M, x ∈ N, i ∈ N ∪M
(2.9)

The amount of flow out of a routing node must be 0 if that node is compromised. It

also underlines the fact that no edge can carry more than |M | − 1 units of flow from

any source client node a.

Variant flow constraints (II):

fc,a,i,x ≤ (|M | − 1) ∗min
ei∈c

(1− svi,x),

c ∈ C, a ∈M, i ∈ N ∪M, x ∈ N
(2.10)

The amount of flow into a node must be 0 if that node is compromised. It also

underlines the fact that no edge can carry more than |M | − 1 units of flow from any

source client node a.
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2.2.3 DAP on the Case Study Topology

We investigate the benefit of optimal diversity assignment on a realistic overlay

network topology. The topology and compromise scenario are detailed in Table 2.2.

Then, various assignments of diversity are shown on the case study topology with

their corresponding expected client connectivity. We show assignments for DAP with

increasing number of variants being used, and we investigate random assignments as

a comparison with the optimal solution.

For a case study topology, we took a connectivity graph from a cloud network

provider [32]. The nodes of the graph represent data centers located around the

globe. Each node is assigned a single variant which means that the overlay routing

element at that data center will utilize the selected variant. The edges of the graph

represent overlay connectivity used on that cloud to connect the different data centers.

This connectivity is provided by a number of Internet Service Providers at each data

center. The clients in the graph represent either clients external to the cloud or

infrastructure components of the cloud. Each client has multiple connections to the

cloud to avoid a single point of failure. In this example we use three connections as

that level of connectivity was quite prevalent in that network. This connectivity graph

was designed with resiliency in mind, and without any consideration for diversity.

We assume some hypothetical scenario with three diverse variants represented

by blue (darkest), yellow (lightest), and red (medium) having a 0.1, 0.15, and 0.2

probability of being compromised over some arbitrary period of time, respectively.

Note that this example, while simplistic, provides an interesting insight into the

benefits and risks of diversity.2

Figure 2.4 shows the optimal solution when only a single variant can be used.

All the nodes are assigned with the least vulnerable variant. This corresponds to

2The purpose of these values is to give preference to one variant over another and to quantify an
estimate of the system resiliency with diversity. While we select numbers to illustrate the main
concepts, the resulting assignment would not be significantly different if other values were selected.
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Figure 2.4.: Optimal assignment of one
variant on case study topology achiev-
ing 0.9 expected client connectivity.

Figure 2.5.: Optimal assignment of two
variants on case study topology achiev-
ing 0.985 expected client connectivity.

Figure 2.6.: Optimal assignment on
case study topology of three variants
achieving 0.997 expected client connec-
tivity.
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Figure 2.7.: Histogram of expected
client connectivity of 100,000 random
assignments on case study topology.

the situation where no diversity is used. The resulting network achieves an expected

client connectivity of 0.9.

Figure 2.5 shows the optimal solution when two variants can be used. Each node

is assigned with either of the two least vulnerable variants. The resulting network

achieves an expected client connectivity of 0.985. Note that this is better than either

variant by itself.

Figure 2.6 shows the optimal solution when three variants can be used. The

resulting network achieves an expected client connectivity of 0.997. Notice that the

optimal solution finds an assignment where any single variant is capable of connecting

all clients. By adding a third more vulnerable variant actually makes the system

significantly more resilient.
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Table 2.2: Network characteristics for case study topology.

Symbol Description

N Set of 20 overlay nodes, shown in the figures as colored

circles.

M Set of 10 client nodes, shown in the figures as white

squares.

V Set of variants. v1 represented by blue, v2 represented by

yellow, and v3 represented by red. In Figure 2.4: {v1}.

In Figure 2.5: {v1, v2}. In Figure 2.6 and Figure 2.8:

{v1, v2, v3}.

C Set of compromise event sets. In Figure 2.4: {{}, {v1}}.

In Figure 2.5: {{}, {v1}, {v2}, {v1, v2}}. In Figure 2.6

and Figure 2.8: {{}, {v1}, {v2}, {v3}, {v1, v2}, {v1, v3},

{v2, v3}, {v1, v2, v3}}.

wi,j Constants designating that edge {i, j} exists. These are

too numerous to be listed here, but can be observed from

the figures.

E The probability of compromise events for each variant

are P (e1) = .1, P (e2) = .15, P (e3) = .2.

As stated before, in this example, each client is connected to three routing nodes.

If clients do not have at least three potential entry points into the network, then the

availability of the connection is limited by the variants of the routing nodes that they

are connected to. For example, if each client only connects to a single routing node,

that connection would fail if either of the entry-point routing nodes is compromised.

This is much more likely to occur than if there are three such entry-point routing

nodes for each client, requiring at least three routing nodes to be compromised to cut

the connection.
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In this example, including variants that have a higher but independent probability

of being compromised improves the overall system resiliency. This may be counter-

intuitive, as adding weaker components to a system usually makes it weaker, not

stronger. The independence of the different variants and the overall robustness of the

network mean that adding additional, more vulnerable variants makes a system more

resilient.

As discussed earlier, random assignment could be used instead of the optimal MIP

approach. One might expect this approach to do well, since randomness often helps

in adding diversity to systems. However, this does not necessarily lead to a good

result. An example graph can be seen in Figure 2.8. This graph achieves an expected

client connectivity of only 0.811, much worse than any of the other three graphs. In

fact, it barely outperforms the worst of the three variants. This example graph comes

from the bottom 1% of possible assignments and is given as an example of what could

occur if the diversity assignment is not considered carefully.

Figure 2.7 is a histogram created with data from 100,000 random assignments

of this graph. For this data set, the minimum and maximum are 0.751 and 0.988

respectively. The mean is 0.931 and the median is 0.937. As can be seen, most

of the random assignments perform better than if the best variant is used by itself

(0.937 > 0.9). However, very few of the random assignments come close to performing

as well as the optimal assignment found by MIP.

The optimal solution of 0.997 expected client connectivity exists while the best

random solution out of the 100,000 random assignment shown in Figure 2.7 was 0.988

expected client connectivity. Thus, even the best random solution out of numerous

trials does not achieve the optimal solution. We define expected client disconnectivity

to be the expected probability that communication between a client pair is broken,

and this value is equivalent to (expected client disconnectivity) = 1 - (expected client

connectivity). In terms of expected client disconnectivity the best random solution

is 0.012 while the optimal solution is 0.003, so a client-to-client connection is broken

four times less often with the optimal assignment.



27

Interestingly, the difference between what the optimal solution provides and the

probability that at least one of the variants is non-compromised provides a metric

for the quality of the connectivity resiliency of the graph.Ideally, we would want this

distance to be zero, as in Figure 2.5 and Figure 2.6 of the provided example.

2.2.4 Near-optimal Assignments on Case Study Topology

Here, we aim to further understand why the problem is difficult and an optimal

solution is several factors better than random assignments from the perspective of the

expected client disconnectivity. To achieve this, compute the set of all assignments

near the optimal solution in terms of expected client disconnectivity. The number

of assignments found compared to the size of the search space further supports our

claim that random assignments are typically much worse than the optimal assignment.

Thus, applying techniques of this work to search for optimal assignments is important

for any network aiming to achieve high resilience through diversity.

We search for solutions within a disconnectivity factor of the optimal solution.

This value is computed from a given expected client disconnectivity as follows:

disconnectivity factor =
expected client disconnectivity

OPT

OPT is the optimal expected client disconnectivity. Intuitively a disconnectivity

factor of two for an assignment implies that clients on average are disconnected twice

as much as the optimal assignment.

An exhaustive search of the entire search space is prohibitively expensive for the

three variant case, and we could not use this strategy to find all near-optimal solutions.

However, we were able to find all solutions within a factor of optimal by leveraging

advanced features of MIP solvers. After finding an optimal solution the solver can

be set to continue searching for solutions. The solver avoids exhaustively searching

the entire space by eliminating large portions of the search space through its branch

and bound techniques. Given that the number of solutions found is small, then this

procedure is quite efficient.
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Figure 2.8.: Random assignment on
case study topology achieving 0.881 ex-
pected client connectivity

Figure 2.9.: Greedy assignment on
case study topology achieving 0.992 ex-
pected client connectivity
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Figure 2.10.: Number of solutions within a given disconnectivity factor bound of
optimal assignment on case study topology.

Figure 2.10 shows the number of solutions within a small factor of the optimal

solution for the three variant scenario. Note the log-scale of the y-axis, and we

also show the proportion of the search space that these solutions represent. The

proportion of the search space indicates the probability that a random assignment

has of achieving an assignment within a small factor of the optimal solution. Thus,

a random assignment has a probability of 3 ∗ 10−9 to achieve optimal, so that would

require on the order of a billion topologies to be assigned and evaluated to find an

optimal solution. The visually linear trend in this figure implies an exponential trend

in the data due to the logscale of the y-axis. Thus, the number of solutions within a

factor of optimal decreases exponentially with respect to decreasing factor, and this

implies searching exponentially more assignments to expect to find such a solution.
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2.3 Scaling Diversity Assignment

DAP is not tractable for large topologies since DAP is NP-Hard (see Theo-

rem 2.2.1). To scale to larger topologies, we sacrifice optimality in order to ensure the

algorithm completes within a polynomially-bounded time. In this section we present

the Approximate DAP (A-DAP), a greedy approach to A-DAP, an example on the

case study topology, and an evaluation on random topologies.

2.3.1 Approximate DAP (A-DAP)

A-DAP is similar to DAP, but A-DAP does not require that the problem be

solved optimally. By relaxing this condition, we aim to find algorithms that run in

polynomial time which are able to find large values of expected client connectivity.

We do not formally define any restrictions on the goodness of the approximations as

it is an open problem of whether a reasonable bound can be placed on the expected

client connectivity achieved by a deterministic polynomial time algorithm. Instead

we used random topologies to validate the goodness of expected client connectivities

achieved by a greedy approach to A-DAP when compared with the optimal.

2.3.2 Greedy Approach to A-DAP

Our greedy approach incrementally assigns nodes to variants. At each incremental

assignment the algorithm considers several candidate assignments and selects the

one which provides the best immediate results. For a candidate set of incremental

assignments we consider sets of nodes which can connect a client pair by a variant, so

we consider at most
(|M |

2

)
∗ |V | candidate variant assignments. For a given client pair

and variant, we compute the minimal number of unassigned nodes which must be

assigned that variant to connect those clients by that variant. After this computation

we have two values: the increase in expected client connectivity α and the number of

newly assigned nodes β.
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Given a set of candidate assignments that each have an α and β value, we select

the one which maximizes α
β
. It is obvious why we want to find large α values, but it

is equally important to ensure the β value is small as well. Smaller values of β allow

for more nodes to remain unassigned and to be used to connect more client pairs

by other variants in future assignments. This approach is analogous to the greedy

choice in bin packing, as we select items with the highest payoff versus weight ratio

to ensure that items are selected that increase overall payoff while allowing for more

items to be picked in the future. Note that β = 0 is a trivial case where the candidate

is simply removed from consideration as the client pair is already connected via the

considered variant.

The pseudo-code of the algorithm is shown in Algorithm 1. Each iteration of the

while loop (Line 3-15) creates a set of candidate variant assignments (Line 7), then

selects the best candidate (Line 11-14), and lastly applies the assignment of that

candidate to the topology (Line 15). This algorithm completes when no further client

pairs can be connected by a variant, and the algorithm is guaranteed to complete in

a bounded number of iterations since each step connects at least one new client pair

via a variant (at most |C| ∗ |M |2 iterations).

2.3.3 A-DAP on the Case Study Topology

We consider the same scenario as in Section 2.2.3 with three variants. Figure 2.9

shows the assignment found by our greedy solution which achieves 0.992 expected

client connectivity. Notice that all clients are connected via just the blue or yellow

variants. However, two clients remain unconnected from the rest if only the red variant

is uncompromised. The optimal solution found with the MIP formulation finds an

assignment which connects all clients as long as any single variant is uncompromised.

This loss of expected client connectivity is due to the greedy algorithm making choices

in the early steps of the algorithm to connect clients via blue and yellow variants

(the more resilient variants) which leaves fewer choices to connect clients via the
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Algorithm 1 Greedy assignment heuristic

Variables

CPVC: Client Pair and Variant Combinations

VA: Variant Assignment

DVA: Delta Variant Assignment

CG: Connectivity Gain

BCG: Best Connectivity Gain

DVA: Delta Variant Assignment

BDVA: Best Delta Variant Assignment

α: Tunable parameter which affects the trade-off between increasing connectiv-

ity and minimizing the size of the DVA set

Functions

f(·, ·): Minimal set of unassigned overlay nodes that must be assigned a partic-

ular variant to connect a particular client pair

g(·): Overall connectivity for a particular variant assignment

Algorithm

1: CPVC := M ×M × V

2: VA := ∅

3: while CPVC 6= ∅ do

4: BCG := 0

5: BDVA := ∅

6: for all x ∈ CPVC do

7: DVA := f(x,VA)

8: if DVA = ∅ then

9: CPVC := CPVC− x

10: else

11: CG := g(VA∪DVA)−g(VA)

|DVA|α

12: if CG > BCG then

13: BDVA := DVA

14: BCG := CG

15: VA := VA ∪DVA

red variants. The greedy approach for the A-DAP took 0.38 seconds to complete

while the MIP approach for the DAP took 396.13 seconds to complete. With far

less computational requirements, the greedy heuristic does outperform the best of
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the 100,000 random assignments (0.988 client connectivity) and comes close to the

optimal solution.

2.3.4 A-DAP on Random Topologies

We present a methodology followed by results to answer the following questions

of interest about the performance of the greedy heuristic for the A-DAP:

1. How does the goodness of the assignment of the greedy algorithm compare

to other algorithms (random assignment and optimal) for the DAP on typical

topologies?

2. How does the running time of the greedy heuristic for the A-DAP and the

MIP approach for the DAP vary with typical topologies created with different

parameters?

3. What are trends in the expected client connectivity over all the assignment

algorithms when varying topology parameters?

We select expected client connectivity and running time to measure for each algo-

rithm. Expected client connectivity is a measure of how well the algorithm performs,

which can be compared with MIP’s optimal value. Running time is a measure of how

quickly the algorithm will terminate with an expected client connectivity.

We generate random topologies in a similar way to random wireless topologies.

That is, we place the desired number of nodes and clients randomly inside a two-

dimensional box. Then based on a density parameter, we give each node and client a

range. All nodes and client within the range have an edge between them. The density

parameter is the average number of connections for each node or client. Note that

client to client edges are not added. We can create many random topologies given

a number of nodes and a density value. We chose to limit the number of nodes in

order to ensure that the optimal value could be calculated for comparison. Topologies

constructed in this way are obviously representative of wireless contexts, but they are
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also quite similar to overlay topologies because overlay topologies include many short,

well-behaved links.

Given topology parameters, we create 30 random topologies and run the three

algorithms on these topologies. We average the expected client connectivity and

running times obtained for each algorithm over the 30 runs. For the running time

values of the MIP formulation, it is important to note that we use the software package

CPLEX with a quad-core 3.4 Ghz Intel processor which does leverage all cores.

We describe how they answer each of the initial questions that we proposed.

Question 1. The goodness of an algorithm’s assignment is the expected client

connectivity. This is upper-bounded by the optimal value (which the MIP approach

always achieves). The greedy heuristic outperformed the random assignment and was

quite close to the optimal value, independent of varying either density (Figure 2.11)

or the number of nodes (Figure 2.13).

Question 2. The running time of the greedy heuristic is on the order of millisec-

onds, which is barely visible when compared to the running time of the MIP-based

approach. Figure 2.12 shows the MIP approach running time for varying density val-

ues. The running time is low for small density values since most variant assignments

result in poor expected client connectivity, allowing the branch-and-bound algorithm

of CPLEX to avoid searching the majority of variant assignments. The running time

is also low for high density values since a dense graph has many possible optimal

assignments and the branch-and-bound algorithm can terminate early after finding

any of them. Thus, the problem is hardest for moderate density values. The running

time of both algorithms when varying the size of the network is shown in Figure 2.14.

The MIP approach running time grows nearly linearly over these input parameters,

but this relationship is potentially exponential according to Theorem 2.2.1. The MIP

approach running time is still significantly greater than the greedy approach.

Question 3. The trend of expected client connectivity is similar among all three

algorithms. The expected client connectivity increases as density increases (Fig-

ure 2.11), which is expected since more edges allow more possibilities for clients to
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Figure 2.11.: Expected client connec-
tivity of random, optimal, and greedy
assignments on random topologies for
25 nodes and varied density.
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become connected. The expected client connectivity decreases as the number of nodes

increases (Figure 2.13). By keeping the density constant and increasing the number

of nodes, the graph becomes less connected and therefore less resilient.

From these results we see that the greedy heuristic outperforms the random algo-

rithm while being quite close to the optimal solution, and the greedy heuristic is far

more efficient in terms of running time and is polynomially-bounded while the MIP

formulation is not. Hence, on larger topologies where the MIP formulation cannot

be computed, the greedy heuristic is a decent substitute. Another interesting result

is that the expected client connectivity decreases with more nodes when keeping the

density constant. So, the density or node degree must increase to retain high levels

of expected client connectivity when the number of nodes increases in the topology.

2.4 Diversity Assignment for Dynamic Topologies

In practice, networks typically do not remain static throughout their lifetime.

Instead an initial setup is deployed and over time nodes are dynamically added. One

trivial way to leverage diversity in an online scenario is to solve DAP every time a

change in the topology occurs. However, for many classes of diversity it is highly

expensive or even prohibitive to reassign an existing node of one variant to a different
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variant as it may be difficult to revoke access from an administrator or expensive

to reinstall a new diverse software. A more realistic solution is to always keep the

existing variant assignment and just assign variants to the newly added nodes.

We next describe the specific model which captures our assumptions. Then we

describe an approach to solve this problem and evaluate this approach for an online

scenario.

2.4.1 Online DAP (O-DAP)

We assume that there is some variant assignment that exists for a set of nodes

which we denote by A′. A new set of nodes are added to the topology with given links

to existing nodes in the network. We assume that there is no knowledge of future

topology changes, so we cannot anticipate where new nodes may be added, which is

an assumption that is realistic in practice. We seek a variant assignment, A, which

retains all of the variant assignments of A′. We denote this problem as the Online

Diversity Assignment Problem (O-DAP) with formal details in Definition 2.4.1.

Definition 2.4.1 The Online Diversity Assignment Problem extends DAP by adding

additional constraints. There exists some set of nodes which have already been as-

signed variants, and this existing assignment is denoted by A′. We are using the
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notation A′ ⊂ A to convey that the assignment A must retain the assignment of A′.

The assignment A does have the freedom to assign variants in any way to those new

nodes added to the network which are not contained in the assignment A′. Reusing no-

tation from Definition 2.2.1, we can define the Online Diversity Assignment Problem

as:

argmaxA

(
E
[∑

{a,b∈M :a<b} fA,c(a, b)
])

subject to A′ ⊂ A

Theorem 2.4.1 The Online Diversity Assignment Problem is NP-Hard with two or

more variants.

Proof Let A′ = ∅, and then O-DAP is equivalent to DAP. Theorem 2.2.1 states

that DAP is NP-Hard.

2.4.2 MIP Approach to O-DAP

We detail a MIP approach for O-DAP as it is typically easy to solve O-DAP

optimally because the number of nodes which are added to a network at once is

usually small. Given that x nodes are added to the network and x is small, then

the search space, |V |x, is reasonably small as well. Exhaustive search by checking all

possible variant assignment combinations of the x new nodes could be used. However,

as we already have a MIP formulation available to us, it is simple to reformulate the

MIP that optimally solves DAP to optimally solve O-DAP. Specifically, we add the

following constraint to the same MIP formulation for DAP from Section 2.2.2.

Online variant constraints:

svi,x = 1, 〈x, vi〉 ∈ A′ (2.11)

Nodes that have been assigned previously by A′ (elements in A′ are two tuples de-

noting a node and its corresponding variant assignment) must keep that variant as-

signment.
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Theorem 2.4.1 states that O-DAP is NP-Hard. In scenarios where the number of

nodes being added dynamically is large, it is possible to extend the greedy approach

for A-DAP into an online version that approximates O-DAP.

2.4.3 O-DAP on the Case Study Topology

The expected client connectivity of DAP is always greater than or equal to that of

O-DAP for the same topology because O-DAP only adds constraints to DAP. For a

real deployment this means that reconfiguring all of the variants to be optimal when

each dynamic change occurs always results in equal or better expected client connec-

tivity compared with an online version where existing variants cannot be reconfigured.

We measure this degradation in expected client connectivity for this evaluation.

The size of the incremental node additions influences the resulting expected client

connectivity. A network which does many additions of just a few nodes per topology

change will suffer more in expected client connectivity than a network which adds

many nodes per topology change. Networks which add many nodes at once allow

O-DAP to consider more combinations of variant assignment choices. We consider

the following two scenarios for dynamic topologies in our evaluation:

• reconfigure: DAP is solved and that solution is applied to all nodes in the

network. As reconfiguring is typically an unreasonable approach in practice, we

use this as a baseline for comparison with the online approach.

• online-x: Nodes are added to the network x at a time, and O-DAP is solved

where the variants of existing nodes in the network cannot be changed.

We evaluate these strategies with the following scenario on our case study topology.

We initialize a scenario topology from our case study topology by selecting 8 of the

20 nodes. Next, we solve the DAP for the scenario topology. Then, we add nodes to

the scenario topology based on the strategy being used (i.e., x for online-x) until all

20 nodes are in the scenario topology. We keep the order in which nodes are added
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to the scenario topology consistent across different strategies. For example, the first

four nodes added one at a time in online-1 will be the same nodes added all at once in

the first iteration of online-4. Note that while the topologies will match, the variant

assignments may differ. We repeat this process for 30 different scenarios, randomly

varying which nodes are in the initial topology and the order in which the remaining

nodes are added. Finally we show averages over these 30 scenarios.

Figure 2.15 shows the results for the evaluated strategies. From this figure it

is evident that the online strategies achieve less expected client connectivity than

the reconfigure strategy. To better compare these strategies we show Figure 2.16,

which instead of showing absolute expected client connectivity, shows the proportion

of the expected client connectivity achieved by the online versions to the expected

client connectivity achieved by the reconfigure strategy, which is optimal. The online

strategies always achieve at least 95% of the reconfigure strategy. More dynamic

strategies reduce client connectivity, but in our experiment this degradation was never

more than 1% when comparing online-1 and online-4. The downward then upward

trend (V-shape) of Figure 2.16 is due to the following: the initial downward trend

is due to the online strategies diverging more and more from reconfigure strategy at

larger node values, the latter upward trend is due to the general high connectivity
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in the topology which results in any online assignment strategy being close to the

reconfigure’s optimal assignment as the network becomes fully assigned.

These results indicate that diversity is not limited to static deployments, but that

diversity can also be applied effectively when networks are dynamic. However, a trade-

off exists; reconfiguring the entire network is costly but it yields the optimal expected

client connectivity. It is up to the system designer to judge the correct balance

between resilience and reconfiguration cost. For systems with very high resiliency

goals, this reconfiguration may be necessary. When the highest resiliency is not

necessary, the O-DAP approach can be utilized to eliminate the costs of reconfiguring

nodes while sacrificing resiliency. In our experiments, we observed that the O-DAP

approach achieved resiliency no worse than 95% of optimal.

2.5 Diversity Assignment for Specific Applications

Certain distributed systems that maintain consistent state pride themselves on

their ability to tolerate part of the system failing. State machine replication pro-

tocols with this property include Paxos [33], Byzantine Fault Tolerance (BFT) [34],

Prime [42], and Aardvark [43], where Prime and Aardvark give additional performance

guarantees even while the system is under attack. These protocols explicitly state

their assumptions about the proportion of replicas that must be correct for safety

and liveness properties to hold. However, an equally important consideration is that

a sufficient number of correct replicas must be able to communicate with each other

via the underlying network. If we view the state machine replicas as clients of the

underlying network, then applying diversity to the network improves the resiliency of

the overall system.

We use these state machine replication protocols as an example of how to cus-

tomize DAP for a specific client application. The state machine replication protocols

have specific connectivity needs among replicas that must be satisfied to ensure safety

and liveness. We show how DAP is customized to better ensure the network meets
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these requirements, and we show how such customization can be helpful in a realistic

scenario. The steps we take here to customize DAP can be followed to create other

versions that meet the specific connectivity needs of other distributed systems.

The expected client connectivity from DAP maximizes the expected value of the

proportion of client pairs that are connected. This is a reasonable metric for resiliency

of many applications, and it could even work well for state machine replication in

certain scenarios. However, an approach that takes into account the connectivity

requirements of the specific application (in this case, state machine replication) may

result in higher overall resiliency. We refine DAP to exactly match the needs of a

replicated state machine protocol by maximizing the probability that a specific sized

connected component exists among the replicas.

2.5.1 Connected Component DAP (CC-DAP)

The goal of this algorithm is to optimize the probability that g clients can com-

municate with each other. The connected component size g can be derived from

the specific state machine replication protocol, we demonstrate this later with BFT.

We denote this problem as the Connected Component Diversity Assignment Problem

(CC-DAP) with formal details in Defintion 2.5.1 (notation comes from Table 2.1).

Unsurprisingly, this problem is also NP-Hard as stated in Theorem 2.5.1.

Definition 2.5.1 The Connected Component Diversity Assignment Problem is to

find the assignment of variants to nodes which maximizes the probability of a com-

ponent of clients being connected. First, we define the random variable XA which is

the size of the largest connected component of clients given a variant assignment A.

This variable is random as it depends on the random events E. Then, the Connected

Component Diversity Assignment Problem is:

argmaxA (P (XA ≥ g))

Theorem 2.5.1 The Connected Component Diversity Assignment Problem is NP-

Hard with two or more variants.
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Proof We show that a variant of 3-SAT which is denoted as Not-All-Equal 3-SAT

[44] is polynomial-time Turing-reducible to CC-DAP. Not-All-Equal 3-SAT has the

same setup as 3-SAT except clauses where all variables are true is not allowed; there

must be a mixture of true and false variables. We will show that Not-All-Equal 3-SAT

is solvable in polynomial-time if both the CC-DAP is used as a subroutine and the

CC-DAP is solvable in polynomial-time.

Assume the same network setup as in the proof for NP-Hardness of DAP which

is visualized in Figure 2.3. This proof differs as we replace the last step of assigning

P (e1) and P (e2) and use CC-DAP instead of DAP.

In this proof, we can let P (e1) and P (e2) take on any value in the range (0, 1) as

opposed to requiring certain constraints on these values.

For the CC-DAP algorithm, we aim to maximize the probability of a connected

component of |M | clients, i.e., all clients in a connected component.

If and only if CC-DAP finds a probability of 1 − P (e1) ∗ P (e2) for a connected

component of |M | clients, then we have also found a solution to Not-All-Equal 3-

SAT due to the following: CC-DAP with a probability of 1 − P (e1) ∗ P (e2) implies

each client pair is connected by both variants v1 and v2. The connections between

client pairs ai,j and bi,j ensures that βi 6= β̄i for each βi in Not-All-Equal 3-SAT. The

connections between client pairs ai and bi ensure that each clause i in the Not-All-

Equal 3-SAT problem is connected by at least one true value and at least one false

value which is the requirement for Not-All-Equal 3-SAT. Having at least one false

value for a clause is a special condition that distinguishes it from standard 3-SAT,

and this is the reason we reduce from Not-All-Equal 3-SAT in this proof.

2.5.2 MIP Approach to CC-DAP

For the MIP formulation we keep the constraints in Equations 2.2-2.10 from Sec-

tion 2.2.2, reformulate the objective function, and add new constraints. Our new

objective and constraints include new variables which are used to keep track of which
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subset of clients are used for a connected component βc,a as well as variables to check

if the connected component αc is large enough. We describe the purpose of the new

objective and each new constraint in detail to show how it captures the CC-DAP

problem.

CC-DAP objective:

maximizes,f,α,β
∑
c∈C

∏
ei∈c

(P (ei))
∏
ei /∈c

(1− P (ei))

αc (2.12)

We maximize the probability that a g-sized connected component exists, over all

compromise events. The two products ensure that each possible compromise event is

weighted by the probability that it happens. αc is 1 if a connected component of size

g is present under compromise event c and 0 otherwise.

Component constraint (I):

αc = {0, 1}, c ∈ C (2.13)

A g-sized connected component either exists under compromise event c, or it does

not.

Component constraint (II):

βc,a = {0, 1}, c ∈ C, a ∈M (2.14)

βc,a is 1 if client a is in the g-sized connected component under compromise event c,

and 0 otherwise.

Component constraint (III):

g =
∑
a∈M

βc,a, c ∈ C (2.15)

A valid connected component under compromise event c must be of size g. In any

other case, this constraint will not be met. Note, if a larger connected component

could exist, this constraint ensures that only g clients are considered, which is required

for other constraints.
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Component flow constraint (I):

fc,a,x,b ≤ βc,b, c ∈ C, a, b ∈M, x ∈ N, a 6= b (2.16)

A client b, in the connected component under compromise event c, cannot accept more

than one unit of flow from another client a. If b is not in the connected component,

it will not accept any flow.

Component flow constraint (II):

fc,a,a,x ≤ (g − 1) ∗ βc,a, c ∈ C, a ∈M, x ∈ N (2.17)

A client a, in the connected component under compromise event c, cannot send more

than g − 1 units of flow, enough for every other client in the connected component.

If a is not in the connected component, it will not send any flow.

Component satisfaction constraints:

g ∗ (g − 1) ∗ αc =
∑

a∈M,x∈N

fc,a,a,x, c ∈ C (2.18)

If there exists a g-sized connected component under compromise event c, then there

are a total of g ∗ (g−1) units of flow in the network. If no such connected component

exists, the total flow is 0.

2.5.3 CC-DAP on Example Ring Topology

We provide a quick example on a topology which is contrived to show the ad-

vantage of using CC-DAP for applications such as Paxos and BFT. In the following

subsections we show this on the case study topology as well.

Figure 2.19 shows the configuration as well as the optimal assignment for DAP.

The optimal solution connects all clients by the strongest variant and is able to

connect one additional client pair by the second strongest variant.

Figure 2.17 shows with the same configuration the optimal assignment for CC-

DAP with a connected component size of 9. For 16 replicas, 9 is the smallest required
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Figure 2.17.: Assignment from opti-
mizing probability of Paxos progress on
ring topology.

Figure 2.18.: Assignment from opti-
mizing probability of BFT progress on
ring topology.

Figure 2.19.: Assignment from opti-
mizing expected client connectivity on
ring topology.

Figure 2.20.: Four variant CC-DAP as-
signment for connected components of
size 8 for BFT.

connected component for Paxos to make progress. The optimal assignment is able to

ensure a connected component of 9 with the strongest variant and second strongest

variant independently. That is, as long as either the red or blue variant are not

compromised Paxos will make progress.
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Table 2.3: Values of three metrics for ring topology for three assignments that each
maximize their own metric

Assignment Expect client connec-

tivity

Paxos probability of

progress

BFT probability of

progress

Figure 2.19 0.9004 0.9 0.9

Figure 2.17 0.831 0.985 0.765

Figure 2.18 0.787 0.941 0.941

Figure 2.18 shows the optimal assignment for CC-DAP with a connected com-

ponent size of 11 which is appropriate for BFT with 16 replicas. Here, the optimal

assignment ensures 11 clients are connected when any single variant is compromised.

That is, if just red, just blue, or just green variants are compromised, then BFT will

make progress.

Table 2.3 shows the values of each metric for each assignment. Its important to

notice how poor certain metrics are when they are not being optimized. Thus, this

example shows the value a network can provide when knowing the application being

run among the clients.

2.5.4 CC-DAP for Paxos on the Case Study Topology

We show compelling examples of using CC-DAP for assignment in the context of

Paxos in this subsection and BFT in the next subsection. For a non-trivial comparison

between DAP and CC-DAP, we seek scenarios where DAP cannot connect all client

pairs by every variant individually. These scenarios are trivial for CC-DAP since an

optimal DAP assignment is also an optimal CC-DAP assignment. We slightly change

the setup from Section 2.2.3 to ensure these interesting scenarios. In this Paxos

scenario, we add a new variant v4 where P (e4) = 0.25 represented in the figures by

the color green (second lightest). In the BFT scenario, we had this same new variant

in addition to adding new connections between the clients and the routing nodes.
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Figure 2.21.: Three variant CC-DAP
assignment for connected components
of size 6 for Paxos.

Figure 2.22.: Four variant DAP assign-
ment.

BFT requires this extra modification of including new connections since the nature

of BFT’s assumptions requires larger connected components.

Paxos maintains consistent state given that there are at most fs fail-stop failures

when using a total of n = 2fs + 1 replicas. In this Paxos scenario, we assume replicas

may be partitioned from each other due to attacks on the routing nodes. A client

being partitioned from the others is equivalent to a fail-stop failure. We assume these

are the only types of fail-stop failures, i.e., the network may fail but the replicas

themselves do not fail. Given that we have 10 replicas in total, implies that fs = 4.

As a result, the required connected component size is g = n− fs = 6.

Figure 2.21 shows the assignment when using the MIP approach for CC-DAP while

Figure 2.6 from our earlier explanation shows the assignment when using the MIP

approach for DAP. In Figure 2.21, the probability that 6 of the clients will be able to

communicate is 0.99925 with an expected client connectivity of 0.9675. In contrast,

in Figure 2.6, the probability that 6 of the clients will be able to communicate is

only 0.997 while having an expected client connectivity of 0.997 as well. In essence,

CC-DAP is able to sacrifice some of the expected client connectivity to increase the

probability that a connected component of the desired size will be present.
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2.5.5 CC-DAP for BFT on the Case Study Topology

BFT tolerates up to f byzantine failures when using a total of n = 3f+1 replicas.

We will view these f failures as a combination of fb, byzantine replicas, and fs, fail-

stop replicas (indistinguishable from replicas that have been partitioned away). The

choice of values for fb and fs are left to the system designer. There is trade-off between

fb and fs, governed by the trustworthiness of the replicas vs. the trustworthiness of

the network routing nodes, but further details are beyond the scope of this research.

For our example, we choose fb = 1. Given that we have 10 replicas in total, implying

that f = 3, the system can tolerate two replicas being partitioned away (fs = 2) and

still tolerate one byzantine fault. As a result, the required connected component size

is g = n− fs = 8.

For the results of assignments for BFT, we observe a similar trend to the results of

the Paxos scenario. Figure 2.20 shows the assignment when using the MIP approach

for CC-DAP that achieves a probability of 0.99925 that 8 of the clients communicate.

Figure 2.22 shows the assignment when using the MIP approach for DAP which has

only a probability of 0.997 that 8 of the clients communicate.

2.6 Optimizing Client Traffic Patterns

Specific client connectivity requirements were considered in the previous section.

Those connectivity requirements were based on ensuring cliques of communication

exist even after router compromise occurs. Here we offer optimization based on client

traffic patterns. This offers a selection of importance for certain client pairs based

on the amount of traffic or monetary value of the traffic. The choice between these

two types of utility is based on the type of network and information available to the

network. Instead of finding cliques in CC-DAP or treating all client pairs equally in

DAP, we allow arbitrary selection of value for each client pair.

The network can understand the utility gained for offering communication between

each pair of clients by observing the quantity of traffic between client pairs or based
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on payment the network may receive for delivering data between client-pairs. By

performing diversity assignment based on this information, the network can better

maximize utility by ensuring more important client pairs have communication with

higher tolerance to router compromise.

2.6.1 Weighted DAP (W-DAP)

This problem has a similar definition to DAP with the exception that traffic

weights are included. Each client pair has a given traffic weight which allows us to

compute a weighted expected client connectivity for a given assignment. W-DAP

is to maximize this weighted expected client connectivity instead of expected client

connectivity. We formulate this problem in Definition 2.6.1.

Definition 2.6.1 The Weighted Diversity Assignment Problem is to find the assign-

ment of variants to nodes which maximizes the weighted expected client connectivity.

Let Ta,b be the chosen weight value by the network operator for a client pair a, b. Let

T sum be the sum of all weight values for each pair of clients T sum =
∑
{a,b∈M :a<b} Ta,b,

and this is used for normalizing weighted expected client connectivity between 0 and

1. Let gA,c(a, b) be a weighted connectivity function defined as follows:

gA,c(a, b) =


Ta,b
T sum

if clients a and b are connected

by a set of non-compromised nodes

0 otherwise

The weighted expected client connectivity is (same as expected client connectivity from

Definition 2.2.1 with the exception of using function g instead of f):

E

 ∑
{a,b∈M :a<b}

gA,c(a, b)

 =
∑
c∈C

∏
ek∈c

P (ek)
∏
ek /∈c

(1− P (ek))

 ∗
 ∑
{a,b∈M :a<b}

gA,c(a, b)


The Weighted Diversity Assignment Problem is:

argmaxA

E
 ∑
{a,b∈M :a<b}

gA,c(a, b)


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We know that W-DAP is also hard to solve given that DAP is a special case of

W-DAP, and we proved DAP is hard to solve. This special case occurs when all traffic

weights are equal.

Theorem 2.6.1 The Weighted Diversity Assignment Problem is NP-Hard with two

or more variants.

Proof In the case where ∀a, b, c, d ∈M,Ta,b = Tc,d, solving W-DAP is equivalent to

DAP.

2.6.2 MIP Approach to W-DAP

For the MIP formulation we keep the same formulation of DAP from Section 2.2.2

while reformulating the objective and certain constraints to correctly include traffic

weights between clients. The following modifications to DAP will allow W-DAP to

be solved.

W-DAP objective:

maximizes,f
1

2 ∗ T sum
∗

∑
c∈C,a∈M,x∈N

∏
ei∈c

P (ei)
∏
ei /∈c

(1− P (ei))

 ∗ fc,a,a,x (2.19)

We maximize the weighted expected client connectivity of the graph, over all com-

promise events. The first normalizing term changes to 1
2∗T sum instead of the number

of client pairs. This is just a detail that normalizes the solutions of W-DAP between

0 and 1, and the 2 in the denominator is to handle a small discrepancy where T sum

only sums over each client-pair once while here we sum over each client pair twice

(both directions). The connectivity values fc,a,a,x will be weighted correctly due to

the following changes in constraints.

Weighted client flow constraints (I):∑
x∈N

fc,a,x,b ≤ Ta,b, c ∈ C, a, b ∈M, a 6= b (2.20)
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This is the main change that ensures flow variables optimize for weights. Clients

accept an amount of flow according to the traffic weights. This forces the flow from

a client a to a client b summed over all paths to take on a value of Ta,b if and only if

at least one path from a to b exists given the compromise event c.

Weighted topology constraints:

fc,a,i,j ≤
∑

b∈M,a 6=b

(Ta,b) ∗ wi,j, c ∈ C, a ∈M,

i, j ∈ (N ∪M)

(2.21)

Here, wi,j denotes whether an edge exists (value of 1) or does not exist (value of 0)

between node i and j. We must change the previous value of (|M | − 1) with this

summation over Ta,b values since this is the largest possible amount of flow that may

be needed for a given edge.

Weighted variant flow constraints (I):

fc,a,x,i ≤
∑

b∈M,a6=b

(Ta,b) ∗min
ei∈C

(1− svi,x),

c ∈ C, a ∈M, x ∈ N, i ∈ N ∪M
(2.22)

Weighted variant flow constraints (II):

fc,a,i,x ≤
∑

b∈M,a6=b

(Ta,b) ∗min
ei∈c

(1− svi,x),

c ∈ C, a ∈M, i ∈ N ∪M, x ∈ N
(2.23)

These two weighted variant flow constraints also change the maximum amount of flow

for an edge.

2.6.3 W-DAP on the Case Study Topology

We provide the following example of how W-DAP is useful in a realistic scenario.

We consider the case with four variants from Section 2.5. This scenario is selected

as optimal assignments must make interesting choices because the topology cannot
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Figure 2.23.: Assignment with W-DAP with dominant weights between gray-filled
client-pair on case study topology.

connect all clients by each of the four variants independently. We let one client-pair

be a high priority client pair such that any possible connectivity is more important

than connecting other client-pairs. To do this for the important client pair a, b we

let Ta,b = Tb,a = 100000 (exact value unimportant, just needs to be very large) while

all other traffic weights are 1. The optimization will treat this client pair a, b as a

primary client pair and ensure assignments ensure highest connectivity for that pair.

Then, the other client pairs are assigned to maximize connectivity as long as it does

not hinder the connectivity between a and b.

Figure 2.23 illustrates the optimal assignment to W-DAP in this scenario. The

weighted expected client connectivity is approximately 0.99925, and this value is

significant since it is the probability that at least any one variant is not compromised,

computed by: 1 − 0.1 ∗ 0.15 ∗ 0.2 ∗ 0.25 = 0.99925. This is a close approximation

of the client connectivity value because the dominant client pair is connected when

any single variant exists as you can see the four node-disjoint paths between these

two clients. This solution is more difficult than just finding any set of four node-

disjoint paths between these two clients as that is an easily solvable problem. Out

of all possible node-disjoint paths between these two clients, this one maximizes the

expected client connectivity of the remaining nodes. Thus, the network finds the best

scenario for this primary client pair, and it can still aim to satisfy the other client

pairs as well. Due to the constraint of having to connect this primary client pair,

the general expected client connectivity does suffer as it is 0.99482 compared to the
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0.9975 value that was found in Figure 2.22 which did not optimize for a high priority

client pair.

2.7 Errors in Variant Compromise Estimation

Up to now, we have assumed the true assignment compromise values are known

and independent with each other. In a realistic scenario, these assignment values

could be selected based on expert opinion or extracted from real-world statistics.

Both techniques cannot be perfectly accurate. In this section we investigate what

occurs when assignment is based on imperfect information.

2.7.1 Methodology to Investigate Erroneous Information

We establish certain parameters and values that we use to investigate the effects

of errors in information.

We define three scenarios for obtaining an ECC from solving DAP:

• AVAIL ECC AVAIL INFO is the ECC value based on available information for

an assignment solved with the available information. This is the connectivity

that a network operator expects when using an assignment based on solving

DAP with available information.

• REAL ECC AVAIL INFO is the ECC value based on real information for an

assignment solved with available information. This is the realistic connectivity

that a network operator will actually achieve when using an assignment based

on solving DAP with available information.

• REAL ECC REAL INFO is the ECC value based on real information for an

assignment solved with real information. This is the connectivity that could

have been achieved if the network operator had perfect information.

We consider two types of discrepancies between available and real information.

First, some compromise events have incorrect values, that is, P ′(ei) = P (ei)+∆i where
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Figure 2.24.: Depiction of the difference between independent events on the left
(α = 0) and full depedence on the right (α = 1).

P ′ is the available probability distribution, P is the actual probability distribution,

and ∆i is the error for a particular compromise event. Second, the compromise events

are not fully independent, that is, P ′(E) = (1 − α) ∗ P (E) + α ∗ D(E) where E is

a set of compromise events, D(·) is the probability distribution if there is complete

dependence among the events, and α is a parameter determining how correlated the

variants actually are (α = 0 is complete independence while α = 1 is the most extreme

dependence). We show in Table 2.4 an example of the probability distribution of P ′(·)

for differing values of α with three variants P (e1) = 0.1, P (e2) = 0.15, P (e3) = 0.2.

We also illustrate the independent and full dependence scenarios with Venn diagrams

in Figure 2.24.

With a discrepancy between the available and real information and letting x =

AVAIL ECC AVAIL INFO, y = REAL ECC AVAIL INFO, and z = REAL ECC

REAL INFO we observe the following two types of errors.

• CONFIDENCE ERROR = |x−y|
y

is the error in how confident a network oper-

ator is with the created assignment.

• CONNECTIVITY ERROR = |y−z|
z

is the error in how much worse an assign-

ment based on available information is versus an assignment based on the real

information.
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Table 2.4: Probability distributions for different α values.

e3 e2 e1 α = 0 α = 0.25 α = 0.5 α = 1.0

0.612 0.659 0.706 0.800

1 0.153 0.127 0.102 0.050

1 0.108 0.094 0.079 0.050

1 0.068 0.051 0.034 0.000

1 1 0.027 0.020 0.014 0.000

1 1 0.017 0.013 0.009 0.000

1 1 0.012 0.009 0.006 0.000

1 1 1 0.003 0.027 0.052 0.100

2.7.2 Error Analysis on Random Topologies

We show the effect of a discrepancy in the compromise probability of a single

variant. Then, we show the effect of discrepancy in the assumption of complete in-

dependence among variants. We use random topologies with similar settings to the

random topologies in Section 2.3.4. Each topology had 5 clients and 3 variants with

compromise probabilities P (e1) = 0.1, P (e2) = 0.15, P (e3) = 0.2. In that section

we showed results when varying density and number of nodes. For varying density

we fixed the number of nodes at 25, and for varying the number of nodes we fixed

the density at 6. These values were chosen as these parameters produced interesting

topologies, that is, the topologies were connected but not too connected that assign-

ment was trivial. Thus, in this section we fix the number of nodes to 25 and density

to 6 for interesting topologies to investigate the effects on assignment when there are

discrepancies between available and real information.

Figure 2.25 shows the CONFIDENCE ERROR and CONNECTIVITY ERROR

when the P (e2) used for assignment is different from the real P (e2). We show the

errors when the available information has a compromise probability greater than

the actual compromise probability (∆2 < 0) and less than the actual compromise
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Figure 2.26.: Error values with a dis-
crepency between real and available in-
formation in α.

probability (∆2 > 0). We see the greatest errors for both types of errors when P (e2)

is believed to be a weaker variant than it truly is, that is, ∆2 < 0. This is due to

the assignment algorithm preferring to select v3 over v2 when forced to make a choice

between these two. We observe little errors when ∆2 > 0 which is the case when the

available information indicates v2 is a stronger variant than actuality. This is due to

the random topologies having many client pairs that can be connected by two paths.

Therefore it is not as detrimental for the assignment to prefer v1 over v2. There is

some error which indicates that the preference of v2 over v1 is slightly detrimental.

Figure 2.26 shows the errors when the assignment selected is based on the assump-

tion of complete independence. We note in this case that REAL ECC AVAIL INFO =

REAL ECC REAL INFO, as the assignments are actually the same despite the change

in independence information, and thus CONNECTIVITY ERROR is always equal to

zero in this case. However, CONFIDENCE ERROR is nonzero since any connectiv-

ity believed to be found by a network operator is less than the realistic connectivity

since dependence among variants is detrimental to diversity. We see that this error

increases linearly with α.
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2.8 Summary

This chapter has illustrated the resiliency benefits gained when shifting from ho-

mogeneous networks with potential vulnerabilities shared across all routing nodes to

networks that leverage optimally-assigned diversity. We summarize our key findings.

First, randomly assigning diversity to a realistic network demonstrated surprisingly

poor results, which motivated the need to formulate and solve the Diversity Assign-

ment Problem (DAP). Second, we propose an algorithm that solves DAP optimally

and show the results on medium-sized random networks as well as a realistic network.

Third, we propose an algorithm that approximates the optimal solution, scaling well

to large networks, and show that on random networks the resulting resiliency is close

to that of the optimal solution. Fourth, we show how to optimize for the specific

resiliency needs of an application running on the network. We applied this to Paxos

and BFT, finding that the probability of making progress can be significantly in-

creased. Lastly, as it is difficult to exactly estimate compromise probabilities we

showed how discrepancies between compromise probabilities used for assignment and

the real compromise probabilities affect assignment and resilience.
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3 NULL SPACE BASED DEFENSE FOR POLLUTION ATTACKS IN

WIRELESS NETWORK CODING

In the previous chapter we demonstrated how to ensure a surviving network of nodes

under sophisticated attacks which may be able to compromise certain variants of

routers. After such an attack, the network is partially compromised with a set of

honest nodes that provide a high amount of connectivity between clients. For this

chapter and the next chapter we shift focus to the problem of routing data among

the set of honest nodes using network coding while preventing any attempts by com-

promised nodes to disrupt this routing. This chapter focuses on mitigating the most

well-known attack which threatens the use of network coding in byzantine environ-

ments, namely, pollution attacks.

Network coding routing deviates from traditional store-and-forward routing by

allowing intermediate nodes to code packets together. Network coding is particu-

larly applicable in wireless networks where the broadcast nature and opportunistic

reception of the wireless medium allows network coding to surpass traditional rout-

ing protocols by taking advantage of any overheard packets. Theoretical results [45]

have shown that network coding achieves higher network capacity than traditional

networks with little coordination [46]. In the context of wireless networks, network

coding has emperically achieved increased throughput [5], increased reliability [6, 7],

and reduced power consumption [8]. Numerous practical systems [9–14] have been

proposed to achieve these improvements.

Network coding systems are vulnerable to pollution attacks [47] in which ad-

versaries acting as intermediate nodes inject bogus packets into the network. The

injection of polluted packets can also occur in traditional store-and-forward routing

protocols. In this case, since intermediate nodes just forward packets, any scheme

that provides data source authentication (such as digital signatures) is an effective
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defense in detecting packets that were not created by the source. In random network

coding, intermediate nodes code new packets by computing random linear combi-

nations of the packets received from upstream nodes. In this case, traditional data

source authentication mechanisms are not applicable. Such authentication schemes

need to have homomorphic properties in order to allow intermediate nodes to ver-

ify that the packets they are coding are in turn linear combinations of packets that

originated at the source. Even more, while pollution attacks require little resources

from the attacker they have an epidemic effect in network coding systems as honest

intermediate nodes unknowingly amplify the attack by creating new packets based

on the received infected packets and forwarding the resulting new malformed packets

in the network.

Several pollution defenses exist for pollution attacks relying on cryptographic, in-

formation theory, or algebraic mechanisms. Cryptographic-based schemes [15–19] cre-

ate homomorphic digital signatures and hashes. These techniques impose prohibitive

communication and computation overhead in wireless networks [48]. A cryptographic

solution based on MACs [21] imposes prohibitive overhead in the presence of multiple

byzantine adversaries, which we show in Section 3.4. Information theoretical-based

schemes [25,26] code redundant information into packets, allowing receivers to recover

correct packets when some packets are polluted. Such approaches hinder the system

performance as they limit the throughput of the network coding system based on the

adversary’s available bandwidth or impose restrictions on broadcasts of intermediate

nodes.

Algebraic-based schemes verify that packets received by forwarders belong to the

space defined by the original packets sent by the source. Two representative ap-

proaches are the schemes in [23] and [24]. The scheme in [23] creates non-cryptographic

checksums and relies its security on the difference between the time when a packet

was received and the time when the checksum used to verify the packet was created.

The scheme is effective but requires time synchronization and delays packets before

forwarding them. The scheme in [24] uses null space properties to provide nodes with
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vectors (referred to as null keys) belonging to the null space of source packets that are

used to algebraically verify that the packets belong to the same space as the source

packets. Because the defined null keys are large and would impose high load on the

source and high communication in the network, the source distributes null keys only

to first hop neighbors and relies on the homomorphic property of the null keys to have

intermediate nodes create null keys for their downstream nodes. Thus, the scheme

relies its security on path diversity, to ensure that each node will have a null key that

spans a space much larger than any one adversary can know about. Path diversity

is possible in peer-to-peer networks because links can be inserted and deleted easily.

However, this assumption is not valid in wireless networks where there is less path

diversity and where the topology is optimized based on the wireless link qualities,

making the scheme insecure in wireless networks.

We propose a new defense against pollution attacks based on the null space prop-

erties and without relying on any assumptions about the network topology or time

synchronization. Specifically:

• We propose Split Null Keys (SNK), a new defense against pollution attacks

that splits a null key in two components, a small generation dependent one and

a larger generation independent one chosen randomly1. As a result, after an

initialization phase when the generation independent component is distributed,

only a small portion of a null key (160 bytes) that is dependent on the data from

each generation must be updated for each generation. The small communication

overhead allows the source to securely distribute the update individually to each

forwarder. Since each forwarder receives its own update securely an attacker

cannot exploit the knowledge of the null key, and thus no path diversity is

required. SNK has a smaller communication cost per generation than previous

work and a very small computation cost which consists of inexpensive matrix

1In a network coding scheme the source disseminates the entire sequence of packets in sub-sequences
called generations.



60

multiplications. Our scheme also does not delay packets for verification and

scales with the number of colluding adversaries in the network.

• We formally prove that a probabilistic polynomial time adversary that can con-

trol any set of byzantine forwarder nodes and overhear all communication in

the network, cannot pollute a target victim node. The intuition is that the

large, generation independent portion of the null key serves as a secret between

the source and forwarder, so keeping this portion constant across multiple gen-

erations does not deteriorate security as long as it remains secret. Even if

forwarders collude the adversary cannot know how the null key of the target

victim node and the null keys known by the adversary overlap due to the fact

that all null keys are generated independently and randomly.

• We validate the performance and overhead of our scheme with extensive simula-

tions using a well-known network coding system for wireless networks (MORE

[9]) and realistic link quality measurements from the Roofnet [49] experimental

testbed. Our results show that SNK imposes little communication overhead

with an average of 25 kbps to distribute null keys. SNK outperforms previ-

ous defenses against pollution attacks in both benign and adversarial networks

achieving better throughput and latency. Finally, SNK retains the benefits

of network coding by performing better than a traditional, secure, store-and-

forward routing protocol ARAN [50] (a secure version of the well-known shortest

path routing protocol AODV).

The rest of the chapter is organized as follows. We present the system and attacker

model in Section 3.1 and our approach in Section 3.2. We analyze the security of our

scheme in Section 3.3 and evaluate its performance and overhead in Section 3.4. We

conclude the chapter in Section 3.5.
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Table 3.1: Notation for network coding systems and the SNK protocol

n Number of plain packets per generation

m Number of symbols per plain packet

q Field for a symbol, the symbol size is log2(q)

X Data matrix of plain packets, size n by m

I Identity matrix

A Augmented data matrix of size n by n+m A = [I|X]

c Coded packet, it is an element of the row space of A

V Coding header at a destination used for decoding

B Null space matrix of A which has size n+m by m

0 Matrix of all zeros

Ki Null key for forwarder i which is subspace of the

column space of B

ω Security parameter for the number of null keys a

forwarder uses for verification

K̃i Generation dependent null key, first n rows of Ki

K̄i Generation independent null key, last m columns of Ki

S First n rows of B

T Last m rows of B

Gi Null key generator for null key Ki, B ∗Gi = Ki

θ Number of possible forwarders for a source

β Number of forwarders for a flow

3.1 Pollution Attack Model

We describe the network coding system and adversarial model. The notation we

use is presented in Table 3.1.

3.1.1 Network Coding System

We assume an intra-flow network coding system with one source that sends data

via forwarders to one or more destinations. The source sends data in generations. A
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generation represents a subsequence of packets from the total number of packets and

consists of n plain packets. A plain packet consists of m symbols which are elements of

the finite field Fq (each symbol is of size log2(q) bits). The plain packets are encoded

in a data matrix X of size n by m such that each row is a plain packet. The matrix X

is augmented by the identity matrix I to form an augmented data matrix A = [I|X].

The identity matrix is inserted to serve as a coding header for decoding the coded

packets at a destination.

The source creates coded packets c by generating random vectors that belong to

the row space of A and sends these coded packets to forwarders and destinations

that store them in a coding buffer. Forwarders create coded packets by generating

random vectors from their coding buffer. Destinations eventually obtain a coding

buffer spanning the same space as the row space of A, i.e., each destination has

[V|V ∗X] where V is the coding header and has full rank. The destination decodes

the packets by computing V−1 ∗ [V|V∗X] = [V−1 ∗V|V−1 ∗V∗X] = [I|X] to obtain

the original data matrix X.

Parameter selection. The selection of parameters n and m impacts performance

of a network coding system. The parameter n must be set to ensure a sufficient

number of packets are coded together to obtain network coding gains. However, n

affects coding overhead which is the overhead for distributing the coding header. Each

generation contains a data matrix, X, that is n∗m∗ log2(q) bits, and each generation

the source distributes a larger, augmented data matrix, A, that is n2 ∗ log2(q) + n ∗

m ∗ log2(q) bits. The extra n2 ∗ log2(q) bits distributed are coding overhead. Thus,

the selection of n and m must ensure that n << m to minimize coding overhead.

3.1.2 Adversarial Model

We assume that an attacker mounts pollution attacks by injecting polluted coded

packets in the network. A polluted packet is a coded packet that is not an element

of the row space of A. Nodes downstream from the attacker accept this packet as
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valid and store it in their coding buffer. Forwarders with polluted coded packets

in their coding buffers will create new coded packets that are also polluted. Thus,

the forwarders unknowingly act as pollution attackers themselves, and the attack

propagates epidemically throughout the network. Destinations with polluted coded

packets in their coding buffers will not obtain the data sent by the source upon

decoding. An attacker could be either a rogue node without the credentials to be

part of the network or a node with the credentials to be in the network. We assume

that multiple attackers exist and can collude.

3.2 Split Null Keys (SNK)

We first overview the null space properties that our scheme relies on and then

describe our scheme. In the following, the term forwarders also refers to destinations.

3.2.1 Null Space Properties

Let the null space of the row space of the matrix A (of size n by n + m) be the

column space of B, then we have:

A ∗B = 0

and B is a basis for the null space of the row space of A.

According to the rank nullity theorem

r(A) + r(B) = n+m⇒ r(B) = m

so the rank of the column space of B, r(B), is m. Thus, B is a matrix of size (n+m)

by m.

Definition 3.2.1 A null key is a matrix that spans a subspace of the column space

of B. We denote a null key by K.

We now show three properties for null keys in relation to valid coded packets and

polluted coded packets.
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Lemma 3.2.1 A valid coded packet multiplied by a null key always equals a zero

vector.

Proof By definition, any vector of the row space of A multiplied with any vector of

the column space of B results in a zero.

Lemma 3.2.2 A randomly generated coded packet c has a probability of (1
q
)ω to sat-

isfy c ∗K = 0 where K is a null key with rank ω and q is the symbol size.

Proof Let K be the column space of K. The probability that a randomly chosen

coded packet c yields c ∗ K = 0 is equivalent to the probability that a randomly

chosen coded packet is a vector that is in the null space K. The null space of K is

the space of all vectors c′ such that c′ ∗K = 0. The rank of K is ω, so the rank of

the null space of K is n+m− ω according to the rank nullity theorem. The number

of vectors in the null space of K is qn+m−ω, and the number of possible coded packets

is qn+m. Thus, the probability that a randomly chosen coded packet is a vector that

is in the null space K is qn+m−ω

qn+m
= (1

q
)ω.

Lemma 3.2.3 Let K′ be a matrix that represents a subspace of the column space of

the null key K where K′ has rank ω′ and K has rank ω (ω′ ≤ ω). Then, a randomly

selected coded packet c from the set of coded packets that satisfy c ∗ K′ = 0 has a

probability of (1
q
)(ω−ω

′) to satisfy c ∗K = 0.

Proof Let the column space of K and K′ be denoted by K and K ′ respectively. The

ranks of the null spaces of K and K ′ are n+m−ω and n+m−ω′ respectively. The

number of vectors in the null spaces of K and K ′ are qn+m−ω and qn+m−ω
′
respectively.

Given that K′ is a linear combination of the vectors of K we have that any coded

packet c′ that satisfies c′ ∗ K = 0 also satisfies c′ ∗ K′ = 0, so null space of K is

a subset of the null space of K ′. A randomly selected coded packet c from the null

space of K ′ has a probability of qn+m−ω

qn+m−ω′
= (1

q
)(ω−ω

′) to satisfy c ∗K = 0.

Using null keys to detect pollution. Based on Lemma 3.2.1 and Lemma 3.2.2,

polluted packets can be identified as follows. A forwarder i having the null key Ki
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and receiving a coded packet c will compute c ∗Ki. If the result is a zero vector then

the coded packet is accepted, otherwise the coded packet is dropped. In the case the

packet is accepted, there is low probability that the packet may still be polluted, (1
q
)ω

if the packet is chosen randomly according to Lemma 3.2.2 which is controlled by the

column rank of the null key, ω. We show in Section 3.3 that an attacker cannot do

better than generating polluted coded packets randomly when attempting to pass a

victim node’s verification test.

Impact on security when dimensions of null keys overlap. If the dimen-

sions of the null keys at two forwarders overlap, and a malicious forwarder knows the

dimensions that overlap, then the malicious forwarder can pollute the other forwarder

with a high probability given in Lemma 3.2.3. The higher the overlap, the higher the

success of crafting a polluted packet. Thus, it is essential that an attacker does not

know the dimensions that overlap between their null key and the null keys at other

honest forwarders in the network.

3.2.2 SNK Overview

As a null key is a matrix that is a subspace of the column space of B (which is an

(n + m) by m matrix), the size of a null key for a forwarder is (n + m) by ω, where

ω is the column rank of Ki. As stated in Lemma 3.2.3 the dimensions of null keys

should not overlap, so if the source distributes all the null keys, this results in a very

high communication overhead. Typical settings for wireless networks are q = 256 (1

byte symbols), n = 32, and m = 1468 (n + m = 1500 typical wireless packet size),

w = 5 to prevent random guessing (Lemma 3.2.2) so even with few forwarders in the

network, the source will spend more time sending null keys than data.

In previous work [24] it was proposed to reduce this communication overhead by

having the source send null keys only to the first hop nodes and rely on forwarder

nodes to generate null keys for downstream nodes by combining null keys from up-

stream nodes. Such an approach scales well with large networks, but it makes a
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critical assumption, that there is enough path diversity such that a malicious for-

warder cannot know the dimensions that overlap with null keys at other forwarders.

An attacker that knows which dimensions overlap can easily craft a polluted packet

that passes a legitimate forwarder’s verification test with high probability or even

1 according to Lemma 3.2.3. Such path diversity cannot be guaranteed in wireless

networks.

Given the lack of path diversity in wireless network, we cannot rely on forwarders

to create new null keys for downstream nodes. At the same time, the size of a

null key is large preventing a source from sending individual keys to each forwarder.

Our scheme, Split Null Keys (SNK), is based on the observation that only a small

portion of a null key for a generation is dependent on the data for that generation

while the remaining, larger portion of the null key is chosen randomly. The large,

random portion serves as a secret between the source and forwarder, so keeping this

portion constant across multiple generations does not deteriorate security as long as

it remains secret. SNK splits a null key in two components: a component that is

generation independent which is sent only at system initialization, and a component

that is generation dependent and sent every generation. Specifically, for each null

key, the generation dependent component has a size of ω ∗ n ∗ log2(q) bits, and the

generation independent has a size of ω ∗m∗ log2(q) bits. Thus, every generation, for a

forwarder, our scheme needs to send only ω ∗ n ∗ log2(q) bits, while if the scheme [24]

is used, the entire null key of size at least (n+m) ∗ log2(q) bits needs to be updated

(null keys for this scheme are sometimes larger based on the topology). The source

generates and distributes the null keys for each forwarder, in a secure manner2, so

SNK does not rely on path diversity of the network topology.

At a high level, SNK works as follows (see also Algorithm 2). In the initialization

step which is performed only once, the source creates and distributes the generation

independent null keys to forwarders. In the update step which is performed every

2Note that nodes should share symmetric keys with the source in order to have end-to-end data
integrity and confidentiality; a basic service for any communication protocol.
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Algorithm 2 SNK

Initialization (generation independent): Source initializes a network with forwarders

f1, ..., fθ

1: Randomly select null key generators G1, ...,Gθ

2: Calculate K̄i = Gi for i = 1, ..., θ

3: Distribute K̄i to forwarder i for i = 1, ..., θ

Null key update (generation dependent): Source generates update keys for

a generation consisting of data matrix X for a flow with forwarders

f1, ..., fβ

1: Calculate K̃i = −X ∗Gi for i = f1, ..., fβ

2: Distribute K̃i to forwarder i for i = f1, ..., fβ

Verification (per packet): Forwarder f verifies a coded packet c

1: Form null key Kf from K̃f and K̄f , Kf =

 K̃f

K̄f


2: Verify that c ∗Kf = 0

generation, the source calculates and distributes the generation dependent null keys

for a new generation represented by the data matrix X for each forwarder in the flow.

In the verifying step which is performed every time a packet is received, a forwarder

forms its null key from the received null key parts and verifies a received coded packet.

3.2.3 Null Keys Splitting Procedure

We split each null key into two parts Ki =

 K̃i

K̄i

, a generation dependent null

key (K̃i) and a generation independent null key (K̄i). The first n rows of the null key

are the generation dependent portion, while the remaining m rows are the generation

independent portion. Generation independent null keys are updated once for multiple

generations while generation dependent null keys are updated every generation. As
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in a typical network coding system n � m, ensuring that the generation dependent

portion of a null key has n rows reduces the overhead significantly.

In order to ensure that the generation independent null key component remains

constant across multiple generations we split B as follows. Let S be an n by m matrix

and T be an m by m matrix such that B =

 S

T

. The source keeps T constant

for each generation and computes a new S in order to satisfy the null space property

that A ∗B = 0. Let T = I for each generation:

A ∗B = 0 ⇒ [I|X] ∗

 S

T

 = 0 ⇒ I ∗ S + X ∗T = 0

⇒ S + X ∗T = 0 ⇒ S = −X ∗T

⇒ S = −X ∗ I ⇒ S = −X

Thus, by choosing T = I, we obtain B =

 −X

I

.

A null key is a random subspace of the column space of B. To ensure that a

generation independent null key remains constant for multiple generations, a null key

generator is selected for each null key, and the null key generator remains constant

for multiple generations. The null key generator is a random matrix Gi of size m by

ω with full column rank. A null key is computed as Ki = B ∗Gi.

We show that if we choose T = I, which in turn means B =

 −X

I

, then only

the generation dependent null key is dependent on X: K̃i

K̄i

 = Ki = B ∗Gi =

 −X

I

 ∗Gi =

 −X ∗Gi

Gi


⇒ K̃i = −X ∗Gi and K̄i = Gi

We summarize the splitting algorithm. For each forwarder i the source generates a

random matrix Gi of size m by ω with full column rank. Then, the source computes

the generation independent null key Ki as K̄i = Gi and the generation dependent

null key Ki computed for each generation with data X as K̃i = −(X ∗Gi). Thus,

the null key remains constant for multiple generations and the generation dependent
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null key depends on the data matrix of each generation. Each forwarder recreates its

null key as

 K̃i

K̄i

 = Ki.

3.2.4 Null Key Distribution and Verification

Distribution. An adversary that knows the null keys for a legitimate node can

form coded packets that pass the legitimate node’s verification test. Thus, the source

distributes null keys to each forwarder over confidential and authenticated channels.

We justify the use of these secure channels as we will show in Section 3.4 that our

approach incurs significantly less overhead than previous cryptographic approaches

which do not require secure channels with forwarders. Each forwarder shares a unique

symmetric key with the source which can be set up before distributing generation

independent null keys. For each generation the source generates a null key packet with

the contents 〈i||GID||Enc(K̃i)||MAC(i||GID||Enc(K̃i))〉 where GID is an identifier

for the generation, Enc() is a block cipher encryption such as AES [51] in CBC mode,

and MAC() is a message authentication code such as HMAC [52] with SHA-1. [53].

A null key packet is sent on a multi-hop best path from the source to each forwarder

of the flow for each generation.

Motivation for encrypting K̃i. When distributing the generation dependent

null key K̃i from the source to a forwarder it is necessary to encrypt it such that no

other forwarder can decrypt the value. If the generation dependent null key were not

encrypted, then a subtle attack exists where an attacker can exploit the knowledge

of K̃i over many generations. Given that K̃i is sent in the clear, the attacker obtains

n unique equations in a system of m unknowns, K̃i ∗ K̄i = −X, each generation.

After dm
n
e generations, the attacker obtains enough equations to compute the value

K̄i. With the entire contents of a victim node’s null key, the attacker can craft

polluted coded packets that pass a victim node’s verification test. However, it is easy

to prevent this subtle attack by encrypting each K̃i, and we do this as part of our

protocol.
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Verification. Given that a forwarder i has null key Ki, the forwarder verifies

packet c by checking if c ∗Ki = 0. According to Lemma 3.2.1, a valid packet will

pass verification. Without the knowledge of Ki or any dimensions of Ki, an attacker

can conduct an attack only by randomly generating polluted coded packets. The

probability that such a random polluted packet does pass the verification test is

negligible for typical wireless network coding settings and is given in Lemma 3.2.2.

In our scheme, because the source (which is trusted by all nodes) is the only one

generating null keys and because these null key components are disseminated in a

secure manner, the attacker cannot gain any knowledge of Ki or any dimensions of

Ki and thus cannot improve their probability of polluting node i.

3.3 Security Analysis

We assume a strong adversary that can overhear all communication in the network

for multiple generations and compromise all forwarders in the network except a victim

node that is the target of the attack.3 We formalize the security of our scheme in the

form of Game 1. If the attacker wins the game, the scheme is insecure as the attacker

is able to craft a polluted packet that passes the target node’s verification. The

previous work on null keys [24] is insecure under our assumption since the adversary

will win Game 1 because the knowledge of null keys upstream of the target node

allows those nodes to pollute the target node.

Theorem 3.3.1 computes the probability that an adversary will win Game 1. The

theorem states that if both the cipher used to encrypt the null keys and the PRG used

to generate the null keys cannot be broken then the probability that an attacker will

win the game is the probability that an attacker will just guess a coded packet that

will pass verification. The probability of guessing is the value given by Lemma 3.2.2

which is negligible for typical parameters.

3We do not consider an adversary that attempts to modify null key packets sent to the target node
from the source. We assume that the MAC that is attached to each null key packet is sufficient to
protect against such modification. This can be formally shown with additional attack games and
theorems, but we omit this for space considerations.
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We prove Theorem 3.3.1 by using Lemma 3.3.1 and intermediate games. Lemma

3.3.1 proves that an adversary’s ability to pollute a target node is not improved by

knowing other nodes’ null keys. This lemma is true despite the dimensions of the

target node’s null key possibly overlapping with dimensions of other nodes’ null keys

because an adversary cannot know how they overlap due to the fact that all null

keys are generated independently and randomly. Game 2 describes a game similar

to Game 1 with the exception that the adversary cannot break the PRG. Game 3

describes a game similar to Game 1 with the exception that the adversary can neither

break the cipher nor the PRG. Games 4 and 5 describe what is means for an attacker

to break the PRG and cipher respectively. We show that an adversary wins Game 3

with a negligible probability. If strong PRG and cipher are selected, Games 4 and 5

are won with negligible probability. Given that Game 3, Game 4, or Game 5 must

be won to win Game 1, we can deduce that Game 1, the game the attacker plays

against our SNK protocol, is won with negligible probability. This security analysis

is inspired by and is similar to the one in [21].

Definition 3.3.1 The advantage PA-Adv[A , SNK] of adversary A against SNK is

the probability that A wins Game 1.

Definition 3.3.2 SNK is secure if for all polynomial time adversaries A , the value

PA-Adv[A , SNK] is negligible.

Lemma 3.3.1 Consider a Probabilistic Polynomial-Time (PPT) adversary A1 that

knows the data for a generation X and must produce a polluted coded packet c such

that Ki ∗ c = 0. Given that Gi are chosen truly randomly for each forwarder, A1

gains no advantage if it has knowledge of z null keys Kj where j 6= i and z is bounded

by a polynomial.

Proof Assume an adversary A2 is equivalent to A1 with the exception that A2 has

knowledge of z null keys Kj where j 6= i. The adversary A1 has X and can generate
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Game 1 Pollution attack game for SNK
Game between a challenger C and an adversary A . Parameters are (θ,Ω, E,R, q, n,m, ω) where θ is

the number of forwarders, Ω is the number of generations, E is a cipher, R is a PRG, and the other

parameters are the same as in SNK. Setup:

1: C generates a random key k and a random seed s.

2: C computes Gl for each forwarder l using R(s).

3: C computes K̄l = Gl for each forwarder l.

4: C computes K̃l(j) = −X(j) ∗Gl for each forwarder l and each generation j.

5: C chooses some target forwarder i.

Queries:

1: A can request the target forwarder i. C responds with i.

2: A can request the encrypted generation dependent key for a given generation j. C responds

with Ek(K̃i(j)).

3: A can request the encrypted generation independent key. C responds with Ek(K̄i).

4: A can request the null key Kl(j) of any node l s.t. l 6= i and any generation j. C responds with

Kl(j).

5: A can request the data for generation j. C responds with X(j).

Output:

1: A must output a generation identifier j and coded packet c = [v|x]. A wins the game if

v ∗X(j) 6= x and c ∗Ki(j) = 0.

Game 2 Pollution attack game without a PRG
Intermediate game with parameters (θ,Ω, E, q, n,m, ω). This game is identical to Game 1 with the

exception that the PRG R is replaced with a truly random bit generator. Step 2 of the setup is the

only change.

Game 3 Pollution attack game without a PRG or cipher
Intermediate game with parameters (θ,Ω, q, n,m, ω). This game is identical to Game 3 with the

exception that the cipher E is replaced with a theoretically secure one-time pad. Steps 2 and 3 of

the queries are the only steps changed.

z null key generators Gj’s where j 6= i. With these values, A1 can calculate z null

keys Kj where j 6= i. Since A1 can calculate z null keys Kj where j 6= i in polynomial

time, A1 and A2 are equivalent. Thus, our initial assumption is false, and we must
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Game 4 Cipher attack game
Game for a cipher E with parameters (t1, t2,Ω) between a challenger C and an adversary B1.

Setup:

1: C generates a random key k.

2: C generates random t1-bit messages Mi for 1 ≤ i ≤ Ω.

3: C generates a random t2-bit message M̂ .

Queries:

1: B1 can request Ek(Mi) for some i. C responds with Ek(Mi).

2: B1 can request Ek(M̂). C responds with Ek(M̂).

Output:

1: B1 must output i, M ′, and M ′′. B1 wins the game if Mi = M ′ and M̂ = M ′′.

Game 5 PRG attack game
Game for a PRG R with parameters (t, θ) between a challenger C and an adversary B2.

Setup:

1: C generates a random seed s.

2: C computes t ∗ θ-bit message M from R(s).

3: C groups splits M into sets of t-bit messages M1,M2, ...,Mθ.

4: C chooses an i such that 1 ≤ i ≤ θ.

Queries:

1: B2 can request i. C responds with i.

2: B2 can request Mj s.t. j 6= i. C responds with Mj .

Output:

1: B2 must output M ′. B2 wins the game if M ′ = Mi.

accept that no adversary A2 obtains an advantage over A1 by having knowledge of z

null keys.

Definition 3.3.3 The advantage C-Adv[B1, E] of adversary B1 against E is the

probability that B1 wins Game 4.

Definition 3.3.4 The advantage PRG-Adv[B2, R] of adversary B2 against R is the

probability that B2 wins Game 5.



74

Theorem 3.3.1 SNK with parameters (θ,Ω, E,R, q, n,m, ω) is secure as long as the

cipher E with parameters (ω ∗ n ∗ log2(q), ω ∗ n ∗ log2(q),Ω) is a secure cipher and the

PRG R with parameters (n ∗ m ∗ log2(q), θ) is a secure PRG. More specifically, for

any A there is a cipher adversary B1 and a PRG adversary B2 such that

PA-Adv[A , SNK] ≤ C-Adv[B1, E] + PRG-Adv[B2, R] +

(
1

q

)ω
Proof We prove the theorem using Game 1, Game 2, and Game 3 defined above.

For i = 1, 2, 3 let Wi be the events that A wins the pollution defense game in Game

i.

P [W1] = PA-Adv[A , SNK] (3.1)

In Game 2, we replace R in SNK with a truly random generator. Thus, every

Gi is truly random instead of being generated with a PRG. The rest is the same as

Game 1.

|P [W1]− P [W2]| = PRG-Adv[B1, R] (3.2)

In Game 3, we replace the cipher E in SNK with a truly random generator.

Thus, every response to queries 2 and 3 are random instead of encrypted null keys.

Everything else is the same as Game 2.

|P [W2]− P [W3]| = C-Adv[B2, E] (3.3)

In Game 3, the adversary learns nothing by querying the challenger for encrypted

versions of i’s generation dependent or independent null keys. The adversary cannot

infer the value of Gi from the values of Gl for i 6= l (note that Gl is part of each

Kl(j)) because these values are truly random along with the result of Lemma 3.3.1.

We show that P [W3] = (1
q
)ω. To win adversary must choose a c and j such that:
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c ∗Ki(j) = 0 ⇒ [v|x] ∗ [K̃
t

i(j)|K̄
t
i]
t = 0

⇒ v ∗ K̃i(j) + x ∗ K̄i = 0

⇒ v ∗ (−X(j) ∗Gi) + x ∗Gi = 0

⇒ x ∗Gi − v ∗X(j) ∗Gi = 0

⇒ (x− v ∗X(j)) ∗Gi = 0

Let a = x − v ∗ X(j). The adversary can freely choose any a by choosing an

arbitrary v, and then setting x to a + v ∗X(j). We have simplified the adversaries

problem to choosing a a such that a ∗Gi = 0.

The trivial solution for choosing a is to let a = 0, but this violates the v ∗X 6= x

condition of winning the game. Thus, the adversary must choose an a such that

a 6= 0 and a ∗Gi = 0. Given that Gi is unknown to the adversary and is completely

random in Game 3, any choice of a by the adversary will result in a ∗ Gi being a

random vector of ω elements. Each element of this vector takes a random element

from a field of q elements. Thus, the probability that a ∗Gi = 0 is (1
q
)ω which is also

the probability of winning Game 3.

P [W3] =

(
1

q

)ω
(3.4)

By combining Equations 3.1, 3.2, 3.3, and 3.4 we have:

PA-Adv[A , SNK] ≤ C-Adv[B1, E] + PRG-Adv[B2, R] +

(
1

q

)ω

3.4 Evaluation

In this section, we compare the performance and overhead of SNK with other

pollution defenses and a secure, store-and-forward routing protocol.
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3.4.1 Simulation Methodology

Our experiments are conducted using the Glomosim [54] simulator with an im-

plementation of the MORE [9] wireless network coding system. We use 802.11 [55]

with a raw link bandwidth of 5.5 Mbps. For our topology we use the link quality

measurements from Roofnet [49], a 38-node 802.11b/g mesh network. For each sim-

ulation, we set up a random flow in the network by selecting two random nodes as

the source and the destination; the source transmits for 400 seconds. We select 200

random flows and conduct the simulation once for each flow and protocol.

Metrics. We measure throughput as the rate (in kbps) of data being decoded

at the destination. We measure latency as the time between the start of the source

transferring the first generation to decoding of the generation at the destination. We

measure communication overhead as the total summed rate (in kbps) of overhead data

broadcasted by all nodes. Data that does not belong to a standard network coding

system is overhead data which are checksums, MACs, and null keys.

To demonstrate the efficacy of our scheme, we compare it with previous defenses

against pollution attacks, all implemented in the MORE system. We compare SNK

with the insecure MORE system, two representative cryptographic schemes KFM [16]

and HOMOMAC [21], and two algebraic schemes DART [23] and EDART [23]. To

show that SNK is practical, we also compare it with a secure traditional routing

protocol, ARAN [50]. We do not compare with the scheme in [24] since as described

in Section 3.2 such a scheme will not be secure in wireless networks.

We consider communication and computation overhead of each scheme. SNK

sends generation dependent null key packets each generation, DART and EDART

send checksum packets during generations, HOMOMAC appends MACs to coded

packets, and KFM requires heavy computations.

Parameter selection. We select the network coding parameters to match the

default settings for MORE in [9]. The size of a generation is n = 32, a symbol size of

1 byte q = 28, and the size of a coded packet is 1500 bytes. These parameters are the
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Figure 3.1.: Throughput of SNK,
DART, KFM, and MORE.
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Figure 3.2.: Latency of SNK, DART,
KFM, and MORE.

same for each scheme with the exception of KFM which requires a larger symbol size

to ensure the intractability of the discrete logarithm problem. DART and EDART

are configured to ensure their best performance, as in [23].

Attack settings. We select defense parameters for each defense scheme to ensure

the same strength of (1
2
)40 where the strength corresponds to the probability that the

verification mechanism accepts a polluted coded packet. The rank of null keys, size of

checksums, and number of MACs are selected appropriately for SNK, DART/EDART,

and HOMOMAC respectively. We cannot ensure such strength for the adaptive

defense scheme EDART as it purposely forwards some coded packets without verifying

to reduce the delay imposed by DART. A pollution attacker broadcasts a polluted

coded packet for every 5 coded packets it receives. The polluted coded packets are

generated randomly as there is no better strategy for selecting polluted coded packets

for these schemes given that the underlying security assumptions hold.

3.4.2 Performance Evaluation

We compare with two other proactive defenses KFM and DART. The proactive

schemes verify every coded packet independent of the number of forwarders, so their

overhead is the same in adversarial and benign networks. We include the insecure

system MORE as a baseline for comparison.
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Figure 3.3.: Communication overhead of SNK, HOMOMAC-2, DART, and EDART.

From the results shown in Figure 3.1, SNK outperforms DART by over 100 kbps in

the lowest 50% of flows (according to throughput) due to the lowest flows having larger

number of hops from the source to destination. This pattern shows that DART’s

performance diminishes more than SNK as more hops exist between the source and

destination due to the delaying of each coded packet for verification. Despite the

similar throughput of SNK and DART, Figure 3.2 shows that DART imposes 5 times

the latency compared to SNK. The increased latency of DART is due to the pipelining

of 5 generations that is necessary to mitigate the delayed verification of packets and

achieve high throughput. KFM only maintains roughly 50 kbps for all flows since it

suffers from large computational overhead like many homomorphic signature schemes.

3.4.3 Scalability with Multiple Adversaries

We compare SNK with EDART and HOMOMAC whose performance depends on

the number of adversaries.

Comparison with EDART. DART delays every packet to wait for the check-

sum that verifies that packet, and EDART differs by forwarding packets before they

are verified. As a result, some polluted packets travel multiple hops causing more

damage, and EDART responds by forcing affected nodes to delay packets for verifi-

cation. Unlike EDART, our scheme, SNK, verifies all packets without delaying them.
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EDART with 0 attackers.
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Figure 3.5.: Throughput of SNK and
EDART with 5 attackers.
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Figure 3.6.: Throughput of SNK and
EDART with 10 attackers.
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Therefore the performance of SNK relative to the performance of EDART improves

when attackers are present.

The performance of SNK and EDART with varying numbers of attackers are

shown in Figures 3.4, 3.5, and 3.6. EDART outperforms SNK slightly in the benign

scenario because packets are forwarded without being delayed for verification (veri-

fication is done later when a valid checksum is received), while SNK always verifies

every packet. When attackers are present, SNK outperforms EDART which is most

visible in the top 15% of flows where the difference ranges from 100 kbps to 300 kbps.

These two schemes perform similarly for the rest of the 85% of flows with SNK gaining
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relative throughput to EDART as the number of attackers increases. Averaged over

all flows, the increases in throughput of SNK relative to EDART are 4.8% and 6.2%

for cases of 5 and 10 attackers respectively. As the number of attackers increases,

the EDART scheme will have a lower performance because it may either delay coded

packets to verify them or allow polluted coded packets to be forwarded.

Comparison with HOMOMAC. We use HOMOMAC-x to denote the HO-

MOMAC scheme configured to defend against x adversaries. HOMOMAC utilizes

redundant MACs and a special key distribution to ensure that an adversary cannot

forge a coded packet. To remain resilient, the number of MACs per coded packet

must increase as the number of colluding adversaries increases. We configure HO-

MOMAC to be resilient to varying numbers of colluding adversaries. In Figure 3.7,

we compare the different HOMOMAC variants with SNK which is resilient to any

number of adversaries. The severe degradation in performance is due to the increased

communication cost of appending MACs to each packet, keeping in mind the number

of MACs increases quadratically with respect to the number of colluding adversaries.

3.4.4 SNK vs. Traditional Secure Routing

We showed that SNK outperforms other pollution defenses in a network coding

system. However, for a secure scheme to be practical it must preserve network coding

benefits. In other words, the secure network coding scheme should still have better

performance than a secure traditional store-and-forward routing protocol. To demon-

strate that SNK is a practical defense, we compare it with ARAN, a secure version of

the well-known AODV wireless routing protocol which signs packets to ensure packets

modified by routers are dropped.

Figure 3.8 shows that SNK retains most of the throughput of MORE. The through-

put of SNK is roughly 50 kbps lower than MORE in all flows, and the degradation is

consistent among all flows due to consistent overhead in distributing null keys. SNK

outperforms ARAN in nearly the same fraction of flows that MORE outperforms
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Figure 3.9.: Latency of SNK, MORE,
and ARAN.

ARAN, 65%, and this is due to the advantages of network coding. The 35% of flows

where ARAN outperforms MORE and SNK are flows that have few hops, and few

network coding advantages exist. The latency of network coding systems is gener-

ally higher than traditional routing because an entire generation is transferred before

the first byte of data is decoded at the destination. SNK only imposes up to 10 ms

of additional latency over MORE as seen in Figure 3.9. For 90% of flows, network

coding imposes higher latency on the network. However, at the highest 10% of flows,

the latency of ARAN is significantly higher due to the fact that shortest path routing

suffers in flows with long paths in wireless mesh networks.

3.4.5 Overhead Results

We further evaluate the overhead of the protocols with better performance. We

compare the overhead of SNK, with DART, EDART, and HOMOMAC. We did not

include KFM in the overhead comparison because its low performance (Figure 3.1

and Figure 3.2) does not make it a good candidate for a pollution defense in wireless

networks.

Communication overhead. Figure 3.3 presents the communication overhead

for SNK, DART, EDART, and HOMOMAC. The median communication overhead of

SNK is 25 kbps which is an insignificant amount given the median throughput rate of
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900 kbps for SNK. The other pollution defenses have larger communication overheads.

HOMOMAC has a consistent communication overhead between 130-170 kbps for all

flows. DART and EDART have lower communication overhead than HOMOMAC in

the lowest 40% of flows, but DART and EDART have communication overhead as

high as 600 kbps in the highest flows. The large variations in overhead for DART

and EDART are a result of the variations in the number of forwarders in each flow,

and DART and EDART periodically disseminate checksums to all forwarders.

Computation overhead. We measure the computation overhead that takes

place at the source to generate null keys, checksums, or MACs and at the forwarders to

verify incoming coded packets. On average in our topology, a flow has 4.57 forwarders,

so SNK’s time is 4.57 multiplied by the time to create a null key packet. A null key

packet requires the creation of one generation dependent null key, encrypting it with

AES, and computing an HMAC of the packet with SHA-1. For DART/EDART at

least one checksum packet is required per generation due to the checksum interval of

32 and n = 32, so we give DART/EDART an advantage by only benchmarking for one

checksum per generation. A checksum packet requires the creation of 5 checksums for

the 5 pipelined generations and 1 RSA signature. HOMOMAC’s time is for creating

the required homomorphic MACs for each generation. Benchmarking results are

average times of 1000 runs of a computation on a 2.4 Ghz processor with cryptographic

computations from the OpenSSL library [56].

Figure 3.10 and 3.11 present computational overhead at a forwarder and source

respectively for each scheme. Note that the computational overhead at the desti-

nation is comparable to that at a forwarder. In both cases, SNK imposes the least

computational overhead while DART/EDART imposes slightly more computational

overhead. Due to the generation and verification of multiple MACs, HOMOMAC

requires 4 times the overhead of both SNK and DART/EDART.
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3.5 Summary

We present the Split Null Keys (SNK) protocol, a pollution defense for wireless

network coding that relies on null space properties. We show that our scheme is

secure against a strong adversary that overhears all communication and compromises

multiple forwarders. We evaluate our defense through simulations in a typical network

coding system scenario. Our evaluation shows that SNK maintains the network coding

gains of MORE and outperforms previous pollution defenses.
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4 ENTROPY ATTACKS AND COUNTERMEASURES IN WIRELESS

NETWORK CODING

We now move onto entropy attacks against network coding which has been given

less attention in the literature. The entropy attack enables a small set of malicious

routers to significantly diminish the throughput of a network even if proper defenses

are deployed against pollution attacks. The pollution attack defenses are useless

against entropy attacks as the malicious packets are valid, they just happen to offer

no useful coding information. We demonstrate the effectiveness of entropy attacks on

a network while emphasizing that sophisticated attackers can perform such attacks in

a significantly stealthy way. We propose defenses which work under simplistic forms

of the attack and also intricate defenses which can also detect those sophisticated,

stealthier versions of attacks.

A node creates correct coded packets by computing a random linear combination

of packets stored in its coding buffer. The coding buffer is the set of coded packets

received correctly. A receiver is able to eventually recover the original packets if it ob-

tains n linearly-independent coded packets generated based on original plain packets

from the source. A malicious node can deviate from the standard coding procedure

and conduct two types of attacks that are specific to network coding systems. The

first, well-known attack is called a pollution attack [27, 57] where a node creates an

invalid coded packet which is not a valid combination of coded packets. The second,

less studied attack is called an entropy attack [27, 28] where a node creates a non-

innovative coded packet which is a non-random linear combination of coded packets

such that the coded packet is linearly dependent with the coded packets stored at a

downstream node. A linearly dependent coded packet wastes resources since it adds

no useful information to help the receivers decode the original packets. We clas-
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sify entropy attacks into two categories which require different capabilities from an

attacker:

• A local entropy attack corresponds to an attacker that produces coded packets

that are non-innovative to local neighboring nodes.

• A global entropy attack corresponds to a more capable attacker that produces

coded packets that are seemingly innovative to local neighboring nodes but are

non-innovative to at least one distant downstream node.

Many defenses for pollution attacks were proposed [15–19, 21, 23–27, 58–60], and

they are all designed to defend against invalid coded packets but they provide no de-

fense against attacks that use valid, but non-innovative coded packets. Cryptographic-

based defenses [15–19, 21, 23, 24, 58] use homomorphic cryptography to detect and

drop coded packets that are not valid linear combinations of the source data. Non-

innovative packets will pass such verifications since they are valid combinations of

the source data. Information theoretic defenses [25,26,59] rely on sending additional

redundant information to correct invalid coded packets at the receiver. This ad-

ditional information does not provide any benefit against an attacker that creates

non-innovative packets because the added redundancy will only help recover the non-

innovative packets. Lastly, existing monitoring defenses for pollution attacks [60, 61]

focus on detecting invalid coded packets by comparing the packets received and sent

by a node. While such schemes can detect simple types of entropy attacks in which

the attacker for example sends the same valid packet repeatedly, they can not detect

global entropy attacks.

Previous work [27, 28] showed that receivers waste resources to process non-

innovative packets. However, entropy attacks cause more damage to a network than

just occupying these resources. An entropy attack disrupts routing the same way

selective forwarding attacks [62] disrupt routing in a network. In both cases, the

routing algorithm chooses an optimal route or multiple routes to send data on, but

the attacking node refuses to participate correctly in the forwarding of packets which
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prevents information transfer along one or more paths. While the effect of the entropy

and selective forwarding attacks are similar, defenses against selective forwarding at-

tacks [62–64] can not be directly applied to entropy attacks because entropy attackers

actually send packets and, in the case of global entropy attacks, the attack can not

be locally detected and global information is needed. Multi-path defenses [62] rely

on sending redundant information along multiple paths. Network coding routing in-

herently sends on multiple paths, but performance can still significantly be degraded

by entropy attacks since a compromised node can still deny flow on a fraction of the

paths. ACK-based defenses [63] are not applicable for entropy attacks since they

require nodes to acknowledge that they have received packets and do not provide

mechanisms to detect if those packets were innovative or not. Existing monitoring

defenses [64] require that watchdog nodes receive a fraction of traffic in and out of

a suspected node to make an accurate decision of misbehavior. The approach will

not work for entropy attacks since the watchdog must receive all packets that the

watched node receives, otherwise it cannot determine if the newly created packets are

innovative.

In this chapter we study entropy attacks and their impact on wireless network

coding systems. Specifically:

• We classify entropy attacks based on attacker’s capabilities into local entropy at-

tacks and global entropy attacks. We introduce a new attack, the global entropy

attack in which the attacker generates coded packets that seem to be innova-

tive to immediate neighbors, but are non-innovative for nodes that are further

downstream. We demonstrate via simulation the negative impact of entropy

attacks on network performance.

• We propose a defense scheme against local entropy attacks. The scheme, Non-

innovative Link Adjustment (NLA), routes around attackers by adjusting the

link quality for each link based on the percentage of non-innovative packets
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they carry. We show that while NLA works well for local entropy attacks, is

not effective for global entropy attacks.

• We propose two defenses to address global entropy attacks. In the first de-

fense, Upstream Buffer Propagation (UBP), downstream nodes share informa-

tion about received coded packets with upstream nodes such that immediate

downstream neighbors of an attacker can detect the attack. In the second de-

fense, Buffer Monitoring (BM), watchdog nodes monitor forwarder nodes to

ensure that broadcast coded packets are random linear combinations of all re-

ceived coded packets, and the coefficients of this linear combination are chosen

according to a publicly known pseudo-random function. BM is essentially dif-

ferent from typical monitoring techniques since watchdogs need to know every

packet received by a forwarder. The defenses differ in terms of detection efficacy

and overhead cost.

• We analytically compare the security strength of the UBP and BM defense

schemes. We are able to quantify the capabilities of an attacker under each

global entropy defense.

• We use a real network topology to analyze the applicability of the BM monitoring-

based global entropy defense since not every flow in a topology may have suffi-

cient wireless links to monitor traffic. We find that for the real network topology

we used the monitoring-based defense can be applied to only 84.7% of flows due

to constraints of the topology.

This chapter is organized as follows. Section 4.1 defines the model we assume

for this chapter. Section 4.3 describes local attacks and defenses while Section 4.4

describes global attacks and defenses. Section 4.5 analyzes our defenses emphasizing

their effectiveness and limitations. Section 4.6 analyzes the imposed overhead of our

defenses. Section 4.7 summarizes this chapter.
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4.1 Entropy Attack Model

In this section, we describe the entropy attack model. The network coding system

is the same as presented in the previous Chapter within Section 3.1.1. From the

notation in Table 3.1, the following notation is re-used here: n packets per generation,

m data symbols per packet, q field size of a symbol, A coding buffer, and c coded

packet. The remaining notation in that table is specific to the pollution defense.

To formally define entropy attacks we present some additional notation for net-

work coding operations which includes a time variable t. The source continuously

broadcasts coded packets c(t) that are random linear combinations of the source’s

coding buffer A:

c(t) = r(t) ∗A (4.1)

The vector r(t) is the random vector used to create c(t) at time t at the source. Each

forwarder i has a coding buffer Ai(t) which is a matrix such that the first rows are

the set of all overheard coded packets at node i that are linearly independent when

the forwarder i broadcasts a coded packet at time t, and the rest of the rows are zero

such that the total number of rows is n. The t component is necessary because the

number of non-zero rows in the coding buffer grows over time as more coded packets

are received. Forwarders have a condition that defines when to forward a packet.

For example, in MORE [9] a forwarder will forward when it has received a sufficient

(depending on the topology) number of coded packets. When this condition is met

at time t for forwarder i, the forwarder generates and broadcasts the coded packet

ci(t):

ci(t) = ri(t) ∗Ai(t) (4.2)

The vector ri(t) is the random vector used to create the coded packet ci(t) at time t

at node i.

We define two classes of entropy attacks, local and global. A global entropy

attacker is capable of overhearing traffic on a link that is located several hops down-

stream. Such overhearing is possible if the attacker has a more advanced antenna for
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reception or cooperates with another wireless device that is located near the link that

must be eavesdropped. A global entropy attacker requires a much more sophisticated

defense to deal with. We will motivate via simulation in Section 4.4 the need to create

sophisticated defenses for detecting the most capable entropy attackers.

4.1.1 Local Entropy Attacks

A local entropy attacker creates coded packets that are non-innovative to neigh-

boring nodes. Such an attacker creates non-innovative coded packets by refusing to

code optimally as the optimal is creating a coded packets that is a random linear

combinations of all received coded packets. Specifically, we define a local entropy

attacker as a forwarder i that deviates from the protocol at some time t by creating

a coded packet c̄i(t):

c̄i(t) = r̄i(t) ∗Ai(t) (4.3)

The vector r̄i(t) is an arbitrary vector chosen by the attacker. A random linear

network coding protocol dictates that coded packets are combined randomly, but the

attacker deviates by choosing a non-random vector r̄i(t). Specifically, a non-random

vector is a vector such that at least one element is not chosen randomly, while a

random vector has every element chosen randomly.

4.1.2 Global Entropy Attacks

A global entropy attacker uses global information about what coded packets have

been sent in the network to create coded packets that are seemingly innovative to

local nodes but are non-innovative to some distant downstream node. These coded

packets are also created by refusing to create random linear combinations of received

coded packets but also by including a combination of coded packets from some other

portion of the network to deceptively cause local neighbors to believe the coded packet
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is innovative. Specifically we define a global entropy attacker as a forwarder i that

deviates from the protocol at time t by creating coded packets c̄i(t):

c̄i(t) = r̄i(t) ∗Ai(t) + di(t) (4.4)

The vector r̄i(t) is not a random vector. The vector di(t) is not an element of the

row space of Ai(t) but is an element of the row space of A. That is, di(t) is a linear

combination of some coded packets in the network, but it is not a linear combination

of the coded packets that have been received by node i. The di(t) component of c̄i(t)

is coded information being replayed from some other portion of the network.

4.2 Simulation Methodology

We aim to motivate the need for defenses against entropy attacks by showing the

impact of entropy attacks through simulations. We conduct simulation experiments

to measure the performance of a realistic system under various attack and defense

scenarios.

We select MORE [9] as our wireless intra-flow network coding protocol that is

based on random linear network coding. The source continuously broadcasts coded

packets. A node is selected as a forwarder if it lies on a path or multiple paths from the

source to destination, and these paths have sufficient link qualities. Based on global

link state information, each forwarder is assigned a rebroadcast ratio which determines

the number of coded packets received before creating and broadcasting a new coded

packet. These ratios reflect how much each node contributes to a flow. Once the

destination has received a sufficient number of coded packets for a generation, the

destination sends an ACK back to the source. Upon receiving the ACK, the source

starts sending a new generation.

Our experiments are conducted using the Glomosim [54] simulator. We use a raw

link bandwidth of 5.5 Mbps and 802.11 [55] as the MAC layer protocol. For a realistic

network topology and link qualities, we use the link quality measurements from the
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Roofnet [49] network which is a 38-node 802.11b/g mesh network deployed on MIT

campus.

An experiment consists of 200 simulations that each have a random flow. A

random flow consists of a randomly chosen source and destination pair. In a given

simulation, the source transfers data to the destination for 400 seconds. We mea-

sure performance for a simulation and display all 200 simulations as a Cumulative

Distribution Function (CDF).

For performance, we measure throughput of the system. Throughput is the rate

(in kbps) of data being decoded at the destination. More specifically, throughput is

the total amount of data decoded at the destination (r bits) divided by the transfer

time (T seconds):

Throughput =
r

1000 ∗ T
(4.5)

We select the network coding parameters to match the default settings for MORE

as described in [9]. The number of rows in the matrix A is n = 32, a symbol size of

1 byte q = 28, and the size of a coded packet is 1500 bytes.

To simulate attackers, we define the specific coding behavior of attackers. Ran-

dom nodes from the set of forwarders for a flow are selected as attackers, and those

attackers follow the specified attack behavior.

4.3 Local Entropy Attacks

Using the methodology described in Section 4.2, we show the impact of a local

entropy attack on a typical network, and then we present a defense strategy.

4.3.1 Attack Impact

The damage caused by a local entropy attack is similar to selective forwarding. A

broadcast coded packet that is non-innovative to all neighboring nodes is equivalent

to a node not broadcasting a coded packet at all. The local entropy attack does

cause some additional damage compared to selective forwarding since bandwidth
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Figure 4.1.: Throughput of MORE
with varying entropy attackers.
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and computation of neighboring nodes is wasted to receive the non-innovative coded

packets and determine that they are non-innovative.

A local entropy attack is effective because the system trusts each node to utilize

the link capacities fully to deliver innovative coded packets downstream. Thus, when

a local entropy attacker is located at an important position on a path or multiple

paths between the source and destination, the system delivers many coded packets

to the attacker under the false assumption that new innovative coded packets are

delivered further downstream from this node.

To show the effectiveness of a local entropy attack, we conduct an experiment

using the simulation methodology from Section 4.2 with zero, one, and two entropy

attackers. These local entropy attackers choose r̄i(t) = 〈r1, ..., r16, 0, ..., 0〉, so the first

16 symbols are random while the last 16 symbols are zero. Thus, the attacker codes

normally the first 16 received coded packets, but any further coded packets received

are never used for coding.

Figure 4.1 shows the results of the local entropy attack. Such a simple attack

results in zero throughput for 43% and 70% of flows for one and two attackers, re-

spectively. The zero throughput flows are flows where the attackers happened to cut

the topology consisting of the forwarders. Even the throughput in non-zero flows for

the attacking scenarios degrade throughput significantly. Roughly 15% of the flows
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in each case of attackers has non-zero throughput where the throughput is less than

the lowest throughput for MORE without an attack. The non-zero flows are affected

as well, as the median throughputs are 900, 400, and 0 kbps for 0, 1, and 2 attackers

respectively.

4.3.2 Defense

The ideal defense against a local entropy attacker is to determine which nodes are

performing the attack and remove them from the system. This is not straightforward

based on local decisions since even honest nodes may unknowingly send some non-

innovative coded packets. The reason is because a node knows what it has already

sent, but it does not know what downstream nodes may have received from another

path, and a downstream node may receive the same information along two upstream

paths.

Figure 4.2 shows the proportion of received non-innovative coded packets in each

flow for MORE. There is an obvious increase in non-innovative coded packet recep-

tion with attackers present, but even for the benign case some flows will contain a

significant proportion of non-innovative coded packets. In these benign flows, there

are multiple paths to the destination which have high packet reception probabilities,

thus there is little diversity in the coded packets downstream when these paths con-

verage which accounts for the non-innovative coded packet receptions. For 30% of

benign flows 10% of received coded packets were non-innovative. This is a total for

all nodes in the network, so some links in the flow potentially carry an even larger

proportion of non-innovative coded packets.

Non-innovative Link Adjustment (NLA). We propose NLA as a defense

against local entropy attacks. Because honest nodes also create some non-innovative

packets, we do not adopt a strict node removal strategy. Instead, we punish each

link proportionally with the amount of non-innovative coded packets sent on the link.

The modified link qualities are obtained by multiplying the original link quality with
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Figure 4.3.: Throughput of MORE, MORE-NLA (entropy defense), and the ideal
entropy defense.

the proportion of received innovative coded packets to total coded packets on a link.

A forwarder notifies the network if it notices a significant change in the modified link

qualities. Thus, when a local entropy attacker sends non-innovative coded packets, the

routing layer is alerted that specific links are not carrying innovative coded packets.

For MORE, nodes recalculate their rebroadcast ratios based on the modified link

states which will route data on paths that avoid the attacker node. Performing this

securely requires mechanisms that limit the ability of an attacker to falsely accuse

other nodes. We assume that such mechanisms are in place and they are out of the

scope of this dissertation.

Figure 4.3 demonstrates how the local entropy attack is mitigated by NLA. As

a baseline for the defense, we include an ideal defense where the entropy attacker is

removed from the network. We removed flows (31 of 200) where the entropy attacker

partitions the network from source to destination as there does not exist any set of

forwarders that provides positive throughput. Without a defense, 30% of flows result

in zero throughput, and these are cases where the entropy attacker partitions the set

of forwarders chosen by the routing logic. With NLA, only 5% of flows result in zero

throughput because in the majority of cases where the entropy attacker partitions

the initial set of forwarders, the NLA defense severely punishes the links outgoing

from the malicious node such that the routing logic chooses a new set of forwarders

which can route data around the malicious node. With the exception of the lowest
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Figure 4.4.: Topology for global entropy attack scenario.

performing 20% of flows, the NLA is capable of performing within 50 kbps of the

cases where the local entropy attacker is removed.

4.4 Global Entropy Attacks

In this section we first show how a global entropy attack impacts performance and

argue that the NLA defense cannot mitigate such an attack. We then propose two

defenses that can defend against global entropy attacks.

4.4.1 Attack Impact

We show in Figure 4.4 a specific global entropy attack example. A malicious node

A is able to perform a global entropy attack that A’s downstream neighbor B cannot

detect. The malicious node A sets r̄A(t) = 0 and dA(t) = rA(t) ∗AY (t) where AY (t)

is a coded buffer created from packets that have been overhead from the link between

C and D. With this setting, Equation 4.4 becomes:

c̄A(t) = r̄A(t) ∗AX(t) + dA(t) = rA(t) ∗AY (t)

Node A has access to coded packets sent by C to D via some out-of-band channel

as shown by the dashed line in Figure 4.4, which allows A to create AY (t) (this can
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Table 4.1: Throughput results of various attack and defense scenarios with the
topology in Figure 4.4

Defense Throughput (kbps)

None 233

NLA 214

Ideal 345

be done as simple as overhearing, or by colluding with D). Coded packets broadcast

by A are linear combinations of coded packets that are broadcast by C which include

coded packets that C received directly from S. B has no knowledge of coded packets

that S broadcasts, C receives, and B fails to receive. So, B will receive coded packets

that are innovative to B’s coding buffer from A, but these coded packets are not

innovative to C’s coding buffer. Thus, when C receives linearly dependent coded

packets from B, C cannot be sure if B or A is the entropy attacker given only local

information.

The global entropy attack focuses mainly on being stealthy, but it is still dam-

aging and can reduce throughput significantly like the local entropy attack. We

performed simulations with the topology from Figure 4.4. In this figure, S is the

source, D is the destination, A is the global entropy attacker, and the solid lines indi-

cate standard wireless links, while the dashed line indicates that node A can overhear

the coded packets on the link between C and D. High link qualities are used for

edges (S,A), (A,B), (B,C), (C,D), and we used lower link qualities for edges (S,B)

and (S,C). Thus, the network assumes many packets are routed through the path

S,A,B,C,D. We measured a throughput of 769 kbps when A is honest and 233

kbps when A is a global attacker by replaying combinations of coded packets from

link (C,D). Thus, node A harms system performance, and the node still sends coded

packets that are innovative to local neighbors but are not innovative to neighbors

further downstream.



97

We apply NLA to the scenario in Figure 4.4 to show how it fails to prevent the

entropy attack. As summarized in Table 4.1, the throughput is 214 kbps when NLA

is applied and 345 kbps when the ideal defense is applied. The ideal defense is the

case where the global entropy attacker is removed from the network. NLA actually

has lower throughput compared to the case of no defense which has 233 kbps because

the modified link quality of (B,C) is lowered to nearly zero and thus the network

only utilizes the path S,C,D while the path S,B,C,D still provides some innovative

coded packets even under a global entropy attack. This topology illustrates how

a global entropy can reduce throughput by roughly 30%, but in other topologies a

global entropy attack has the potential to cause greater damage. We conclude that

NLA cannot defend against the global entropy attack.

4.4.2 Global Entropy Defenses Overview

We present two global entropy defenses. In the Upstream Buffer Propagation

(UBP) defense, nodes propagate buffer information upstream to pinpoint the origin

of the global entropy attack. In the Buffer Monitoring (BM) defense, nodes monitor

incoming and outgoing traffic of untrusted, neighbor nodes to immediately detect any

coded packets created in a non-random fashion. To contrast these two techniques,

UBP is more reactive and thus has lower overhead while BM is more proactive and

requires higher overhead, placing constraints on the topology. These schemes require

the following three wireless communication primitives:

• Broadcast. A message is broadcast once and neighboring nodes will receive

the message probabilistically.

• Reliable unicast. A specific neighboring node is designated and the sender

will repeatedly broadcast a message until the receiving node acknowledges the

reception of the message. This primitive can be the standard 802.11 unicast.
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• Reliable multicast. A set of neighboring nodes are designated and the sender

will repeatedly broadcast a message until all receiving nodes acknowledge the

reception of the message. This primitive does not exist naturally in the 802.11

protocol, but it can be realized efficiently by periodically broadcasting the mes-

sage until an acknowledgement is received from each of the designated receivers.

As this primitive is not standard, we analyze its overhead in Section 4.6.2.

Both defenses propose a mechanism for nodes to make an accurate accusation that

another node is a global entropy attacker. A complete solution requires an appropriate

response to such an accusation which is not straightforward since an accuser may be

malicious. This is a general problem for many security protocols, and it is out of the

scope of this dissertation as we can apply approaches from other work that resolve

this issue. One approach from a work on a secure wireless multicast protocol [65]

proposes to only remove accused nodes temporarily and limit the accusations of a

node. Thus, a malicious accusation is not permanently damaging, and a malicious

node cannot disrupt the network by accusing many nodes. Another approach is to use

a reputation system [66,67] to lower the reputation of nodes that have been accused

or have made invalid accusations. With these reputation values, a node with low

reputation can be removed from the network and its accusations can be ignored as

well.

4.4.3 Upstream Buffer Propagation

The defense is initiated by the reception of non-innovative coded packets which

implies that a global entropy attack is upstream. The entropy attacker may reside

along any upstream path. We can determine the entropy attacker by propagating

buffer information upstream until it reaches the source of the global entropy attacker.

Thus, a legitimate node i, in response to receiving non-innovative coded packets,

creates a packet containing its buffer information and sends this packet upstream.

When this buffer information reaches the entropy attacker, the entropy attacker has
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a choice to continue performing the entropy attack and be detected, or to start sending

innovative coded packets. Either way, the entropy attack is mitigated.

There are two challenges to reducing the overhead of propagating buffer informa-

tion upstream to make it practical. The buffer information consists of the coding

headers at a node, and as a node receives more coded packets the total size of all

coding headers at the node becomes large. Thus, our first challenge is to send a small

constant-sized message that conveys to upstream nodes the contents of the buffer,

and we do this with a special type of checksum. Our second challenge is to prevent

flooding the message upstream and instead choose based on local information at each

hop the upstream path that the attack is on.

Null Space Checksums

The buffer checksums utilize the null space of the vector space spanned by coding

headers which is the space of all vectors that result in a zero when multiplied by a

vector from the vector space spanned by the coding headers. We provide background

on null spaces and then we explain how to use null spaces to provide a checksum

for coding headers which is represented by a coding header matrix Vi(t) which is a

matrix of the nonzero coding headers of Ai(t). We denote these checksums as null

space checksums.

Consider a vector space A and a null space N(A) of A. Given any two vectors x

and y such that x ∈ A and y ∈ N(A), we have:

x ∗ yT = 0 (4.6)

The notation wT is the transpose of the matrix or vector w.

For our checksum, we consider A to be the row space of Vi(t) which has R(Vi(t))

rows (we denote R(X) as a function that returns the number of rows of the matrix

X). The vector of the null space is a vector si(t)
T such that:

Vi(t) ∗ si(t)
T = 0 (4.7)
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This corresponds to a linear system of R(Vi(t)) equations and n unknowns. To find

a valid si(t)
T , we simply fill in n−R(Vi(t)) symbols randomly, and we are left with

R(Vi(t)) equations and R(Vi(t)) unknowns which is solved to fill in the remaining

symbols. Thus, computing this vector is computationally inexpensive.

Given si(t)
T and the coding header matrix of another node j at a time t′, Vj(t

′),

we have the following probability:

Pr
(
Vj(t

′) ∗ si(t)
T = 0

)
=

(
1

q

)d
(4.8)

The variable d is the number of rows of Vj(t
′) are linearly independent with all rows

of Vi(t), and the variable q is the cardinality of the field that each symbols lies in

(e.g., q = 256 for network coding over 1 byte symbols). Any row of Vj(t
′) that is

linearly dependent with all rows of Vi(t) results in a zero if multiplied by the vector

si(t)
T . Any row of Vj(t

′) that is linearly independent with all rows of Vi(t) results in

a random symbol when multiplied by the vector si(t)
T . Thus, d symbols are random,

and the probability that all d symbols are zero is (1
q
)d.

Thus, a node j that is upstream from node i knows that if Vj(t
′) ∗ si(t) = 0 then

node j at time t′ most likely has no innovative packets with respect to node i’s coding

buffer at time t. Also, if node j finds that Vj(t
′) ∗ si(t) 6= 0 then j can definitely

create coded packets that are innovative with respect to node i’s coding buffer. The

null space checksums are encapsulated in a Buffer Checksum Packet (BCP) which

contains additional information required by the protocol. We show in Section 4.6.1

that computational overhead is low to generate and check these BCPs.

Single Path Propagation

Instead of sending the buffer information on all possible paths upstream, it only

needs to be sent along one single path. The path can be determined by local decisions

while ensuring with high probability that the global entropy attacker will be part

of the path. A node attaches a sequence number to every coded packet it creates
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and forwards, and nodes maintain some state that allows them to determine which

upstream neighbor sent the last coded packet that triggered the broadcast of a new

coded packet.

To determine a single upstream path for buffer propagation, each node maintains

both a sequence number and a Sequence Number Table (SNT). When a node j broad-

casts a coded packet, it appends its sequence number uj to the coded packet and then

increments uj by one. Upon receiving from upstream neighbor i a coded packet that

has a sequence number ui, node j adds an entry 〈ui, j, uj〉 to its SNT and removes

any old entries with the same ui.

A node j receives a BCP because it had broadcast a coded packet that was globally

non-innovative which triggered the propagation of this BCP at a downstream node

that may be several hops downstream. Based on its SNT, node j knows the upstream

neighbor i that sent the last coded packet which was used to create the globally non-

innovative coded packet at node j. Thus, the attacker is either node i or some node

upstream of node i which caused i to send this packet that is globally non-innovative.

The BCP is forwarded upstream to node i along with the sequence number of the

coded packet that i created so that, if node i is honest, it can make an accurate

decision about which upstream node to use for BCP.

Protocol Description

We now describe in Algorithm 1 the UBP defense in detail. These actions are all in

addition to normal network coding actions and they are triggered by timer expiration

or by packet reception. We assume each node has a public/private key pair, such that

any node i can sign a message with its private key Ki which is denoted by SKi(·) and

any other node in the network can verify this signature.

The protocol is initiated when a node receives a non-innovative coded packet and

starts the propagation of a BCP upstream (lines 1-3 of receiving a coded packet).

Then, an entry is created for the Upstream Accusation Table (UAT), and a timer
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is started for this entry (lines 4-5 of receiving a coded packet). The purpose of the

UAT is to keep track of each usptream neighbor that should send an innovative coded

packet since a BCP was sent to that upstream neighbor. The time that an upstream

neighbor has to send an innovative coded packet is the estimate of the time taken

for the BCP to propagate up to the source and then a coded packet to propagate

down to j. Upon UAT expiration, the node accuses the upstream neighbor of being

an entropy attacker if the upstream neighbor did not manage to send an innovative

coded packet (lines 1-2 of UAT expiration).

A node that receives a BCP will first check the signature and then check whether

it has innovative packets with respect to the null space checksum within the BCP

(lines 1-2 of receiving a BCP). The actions taken by the node depend on whether it

has innovative coded packets. If the node does have innovative coded packets with

respect to the null space checksum, then the node will broadcast a coded packet

and perform the appropriate updates to the SNT (lines 3-7 of receiving a BCP).

Note that these same updates are applied to the SNT for every broadcast of coded

packets despite it not being explicitly mentioned. In the other case, the node forwards

the BCP upstream by selecting the most likely next hop that sent globally non-

innovative coded packets (lines 8-14 of receiving a BCP). The forwarded BCP is

modified to include the sequence number of the coded packet that is expected to

have been globally non-innovative. This sequence number is known since the SNT

maintains the sequence number of the coded packet received from an upstream node

just before each broadcast.

The propagation of BCPs upstream continues along a path until either a malicious

node refuses to keep forwarding it, a node has innovative coded packets and sends

them downstream, or the BCP reaches the source. If the BCP reaches the source,

then the source always has innovative coded packets and will send an innovative

coded packet downstream. Thus, each node has a chance to broadcast and propagate

innovative coded packets downstream before the UAT of its downstream neighbor

expires. The timers for accusation should be set such that upstream nodes’ timers
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expire first, and only the most upstream node that makes an accusation will count.

So, a malicious node will be accused if it refuses to either forward the BCP upstream

or forward innovative coded packets downstream.

4.4.4 Buffer Monitoring

We now present a monitoring-based solution to defend against entropy attacks.

Each forwarder is assigned one or more watchdogs. A larger number of watchdogs pro-

vides resilience to watchdog failure or misbehavior. The watchdog nodes will ensure

that coded packets broadcast by a watched forwarder are random linear combinations

of all received coded packets, and the coefficients of this linear combination are chosen

according to a publicly known pseudo-random function. This scheme is proactive in

nature and thus can immediately detect an attack. However, as any proactive scheme,

it has additional overhead for each coded packet broadcast. In addition, there are

some network topology constraints that might prevent some flows from having each

forwarder assigned the desired number of watchdogs.

For a watchdog to determine whether a coded packet broadcast by a watched for-

warder is random linear combinations of all received coded packets by that forwarder,

the watchdog must know about all coded packets received by that forwarder for the

generation. This poses two challenges. First, the watchdogs must have wireless links

to both the watched node and every upstream neighbor of the watched node, which

may prohibit BM from being applied to certain topologies. This challenge is a fun-

damental constraint imposed by the topology, and we analyze in Section 4.5.2 the

feasibility of selecting watchdogs in a realistic wireless network. Second, once a valid

set of watchdogs are chosen, we need to send minimal amount of data to the watch-

dog to ensure accurate detection while not hindering the opportunistic routing of the

random network coding system.
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Detection at a Watchdog

To determine whether a single coded packet ci(t) from a node i at time t is con-

sistent with traffic that entered node i, the watchdog must determine the coefficients

ri(t) used to create the coded packet from the equation:

ri(t) ∗Ai(t) = ci(t) (4.9)

This is an overconstrained system of n + m equations and n unknowns. Only n

equations are needed to determine the relevant elements of ri(t). There are some

elements of ri(t) that correspond to rows of zero vectors in Ai(t) which cannot be

determined, but these are irrelevant elements as they do not affect the coded packet

being broadcast.

The impact of this result is that a watchdog only requires the coding headers of the

coded packets sent and received by a watched forwarder. A coded packet with typical

network coding system parameters has 32 bytes for the coding header while the entire

coded packet is 1500 bytes. It is important to only reliably multicast a small portion

of the total traffic since random network coding systems gain many advantages by

forwarding data opportunistically instead of sending the data reliably each hop. This

fundamental characteristic of random network coding systems is still retained with

the additional overhead of sending a small portion of a coded packet, the coding

header, with reliable multicast. However, simply determining the value ri(t) does

not completely defend against global entropy attacks as it is difficult to determine

whether the values are chosen randomly or to cause a subtle entropy attack.

Instead of attempting to determine whether a ri(t) used by a watched forwarder

is truly random, we require all nodes to generate the coding coefficients based on a

Pseudo-Random Function (PRF). The PRF is keyed with a key known to all nodes in

the network (to guarantee the coefficients are pseudo-random, the key only needs to

be picked at random and does not need to be secret). The inputs to the PRF are the

node’s ID along with a sequence number for the packet. The usage of a PRF makes

a watchdog’s job simple and deterministic to check whether a set of coefficients used
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Figure 4.5.: Topology for monitoring defense scenario.

by the watched forwarder is truly random. Also, the inputs to the PRF cannot be

controlled by the attacker as a sequence number increases by one with each broadcast

coded packet and the node ID does not change. Due to this constraint, the global

entropy attacker has no opportunity to guess inputs to the PRF that may produce

coefficients that result in an entropy attack. The use of the PRF is computationally

inexpensive, and the random coefficients chosen by the PRF are uniformly random

which is optimal to satisfy the high decoding probabilities in random network coding

systems.

Protocol Description

Figure 4.5 shows an example of a node with one watchdog and three upstream

neighbors. The node X is being watched by a watchdog W . The watchdog must

receive all coding headers from the upstream neighbors A,B, and C along the wireless

links indicated by the dashed lines. Also, the watchdog must receive the coding

headers that are broadcast by node X. With this information, along with knowledge

of a global PRF used by each node, the watchdog can deterministically check whether

node X is correctly creating coded packets or is performing an entropy attack.

Algorithm 4 describes the specific actions of a node j in a monitoring defense.

The node j is a forwarder, a watchdog, or both. We use the notation of two sets that
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exist for each node (these sets may be empty): W (i) are the watchdogs of node i and

D(i) are the downstream neighbors of node i.

To ensure that only a small portion of each coded packet is sent reliably, the cod-

ing headers and coded data are sent separately in a Coding Header Packet (CHP)

and Coded Data Packet (CDP). The CDP is broadcast unreliably (lines 1-2 of broad-

casting a coded packet) and the CHP is reliably multicast to the appropriate set of

nodes (lines 3-5 of broadcasting a coded packet). The appropriate set of nodes are

the downstream nodes, watchdogs of the downstream nodes, and the watchdog of

the broadcasting node (line 4 of broadcasting a coded packet). The watchdogs must

receive the CHP to ensure that it has been formed correctly. The downstream nodes

must receive the CHP to either reconstruct the coded packet if the downstream node

correctly received the CDP (lines 1-2 of receiving CHP from upstream neighbor) or to

notify watchdogs that they lost the CDP with a Dropped Data Packet (DDP) (lines

3-5 of receiving a CHP from upstream neighbor). Lastly, watchdogs of downstream

neighbors must receive the CHP so that they have a view of the buffer information

at the downstream neighbor.

When j is a watchdog and receives a CHP from a node i where j ∈ W (i), j

must create the coding header matrix Vi of node j (lines 1-3 of received CHP from

a watched node), and then check whether the CHP is consistent with Vi and the

random linear combination from the PRF (lines 4-5 of received CHP from a watched

node). The information to perform this check is stored in the Watchdog Buffer Table

(WBT) when upstream nodes send coded packets to node i (line 1 of received CHP

from upstream neighbor of watched node). The WBT must be correctly modified

when a node does not receive a coded packet. This is the purpose of broadcasting

the DDP to watchdog nodes of j when j does not receive the corresponding CDP to

a CHP. The DDP prompts the watchdogs to either remove the entry or drop a future

reception of a CHP that corresponds to the dropped packet (lines 1-5 of receiving a

DDP). If an attacker abuses the use of DDPs and claims to drop more coded packets

than the the measured link qualities, then the watchdog can inform the routing layer
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Table 4.2: Notation for BCP and BM protocols

T c
i,j Avg. time of a coded packet to propagate downstream

from node i to j

TBi,j Avg. time of a BCP to propagate upstream from node

i to j

T Si Avg. time between coded packet sends at node i

TE Exoneration time for a hybrid of UBP

PR
i,j Attack strength from node i to j under UBP

PH
i,j Attack strength from node i to j under a hybrid of UBP

with an exoneration phase

Ni,j Average number of coded packets that can be sent by

node i that are globally non-innovative to downstream

node j in UBP before i must send an innovative coded

packet

of the change in link qualities which will route data around the attacker much like

the modified link qualities in our NLA defense.

4.5 Security Analysis

We analyze UBP in terms of attack strength which denotes the proportion of time

which a globally non-innovative coded packet can be sent undetected. The buffer

monitoring is much stronger in terms of security since an attacker is not capable of

evading detection by a watchdog. However, BM cannot be applied to an arbitrary

flow of a topology and has a higher network overhead. So, we analyze the proportion

of flows BM can be applied to in the Roofnet topology [49].
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Figure 4.6.: Timeline for source, attacker, and victim for the UBP protocol.

4.5.1 Attack Strength of UBP

We aim to describe the attack strength in terms of the characteristics of the

network. Specifically, attack strength represents the proportion of time that coded

packets can be sent from an attacker that are globally non-innovative with respect to

a victim’s coding buffer and the attacker will not be detected as an entropy attacker.

In the remainder of the time, the attacker cannot send a globally non-innovative coded

packet without being detected. Also, since the sending times of coded packets are

fixed by the protocol, the attack strength also represents the proportion of packets

sent by the attacker that can be globally non-innovative while not being detected. The

attack strength will depend on the network characteristics of the average time taken

for both a coded packet (or combinations of the coded packet) to traverse downstream

and a BCP to traverse upstream. These averages differ since coded packets are larger

and sent opportunistically downstream, while BCPs are smaller and sent reliably

upstream immediately at each hop. For this analysis, we use notation from Table 4.2.

Figure 4.6 shows the timeline of events that lead to points where an attacker

can attack in UBP without detection. The scheme waits until an attack is detected

downstream, and then it reacts by sending a BCP upstream along the path that

contains the global entropy attacker. The attacker is detected by a timer expiring

at the entropy attacker’s immediate downstream neighbor which is the time it takes
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for the BCP to reach the source from the attacker and then an innovative coded

packet to traverse downstream to the attacker. During this entire time, the attacker

can consecutively send globally non-innovative coded packets and send an innovative

coded packet when it knows the immediate downstream neighbor’s UAT is about to

expire.

We first determine the number of consecutive non-innovative coded packets that

can be sent by attacker node i that target victim j without detection as:

NR
i,j = 1 +

T c
i,j + TBj,src + T c

src,i

T Si
(4.10)

In addition to the one initial attack packet, there are several opportunities for the

attacker to send globally non-innovative coded packets. The average number of oppor-

tunities is equal to the total time it takes before the attacker must send an innovative

coded packet over the average time between coded packet sends of the attacker node.

We can then determine the attack strength from attacker node i to victim node j

as:

PR
i,j =

NR
i,j

NR
i,j + 1

(4.11)

For each consecutive non-innovative coded packet that can be sent by an entropy

attacker, the entropy attacker must send one innovative coded packet to remain un-

detected.

The attack strength PR
i,j is always at least 0.5 which means that at least half of

the coded packets can be globally non-innovative. The attack strength increases as

the values T c
src,j and TBj,src become larger compared to T Si which happens in larger

networks and when the node i does more broadcasting. The large attack strength is

due to the exoneration of the attacker given just one innovative coded packet. Thus,

the single upstream path found by UBP could enter an exoneration phase for a period
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of time which requires more overhead but detects a global entropy attack proactively.

This results in a hybrid scheme with an attack strength of:

PH
i,j =

Ni,j

Ni,j + 1 + TE
TSi

(4.12)

The exoneration period TE can be varied to obtain various trade-offs between the

additional overhead of the proactive detection in the exoneration period and the

attack strength possible at the attacker.

An obvious way to enforce an exoneration period for a path is to assign watchdogs

as in the BM scheme to these nodes. This would not impose the high overhead of BM

throughout the entire network at all times as UBP can reactively determine which

path an entropy attacker is taking. Alternatively, one could design a different scheme

that can provide an accurate proactive defense which can be used in conjunction with

UBP in this same manner.

4.5.2 Watchdog Selection Constraints of BM

The buffer monitoring defense has a much higher level of security since it can

ensure an attack strength of 0. The watchdog(s) of a forwarder have complete infor-

mation about the coding headers of the forwarder, and the watchdog can determin-

istically assess whether the forwarder created a random combination using the entire

coding buffer. This scheme cannot be employed for each flow of any topology.

The constraint for using the buffer monitoring defense is:

∀f ∈ F,

∣∣∣∣∣∣
L(f) ∩

 ⋂
u∈U(f)

L(u)

− f
∣∣∣∣∣∣ ≥ n (4.13)

F is the set of forwarders for a flow, L(x) is the set of nodes that x has a wireless

link to (this includes x itself), U(x) is the set of upstream neighbors of node x,

and n is the minimum number of watchdogs assigned to each node. This watchdog

assignment allows both the nodes in the flow and nodes outside the flow to act as
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Figure 4.7.: Maximum valid assignment of n watchdogs per forwarder.

watchdogs for a forwarder. Furthermore, we allow a forwarder’s upstream neighbor

to act as its watchdog which will reduce the multicast overhead when the upstream

neighbor must reliably multicast coding headers since the upstream neighbor does

not need to spend communication overhead sending this coding header to itself.

We use the Roofnet data to represent a typical wireless network topology. There

are 38 nodes in the network, so we take all
(
38
2

)
= 1406 possible flows. Out of these

flows we discard 174 trivial flows that contain no forwarders and present results based

on the remaining 1232 flows.

We present information about the maximum watchdog assignment per flow in Fig-

ure 4.7. 15.3% of flows cannot employ a buffer monitoring defense without changing

the forwarder nodes that were optimally selected by the routing algorithm. These

flows contain some forwarder that does not have a wireless link to any node in the

topology that also has a wireless link to each upstream neighbor of the forwarder.

At least one watchdog per forwarder is a minimal constraint. A network may aim

to protect against an attacker that imposes false accusations. In this scenario, three

watchdogs can be assigned to each forwarder to vote on detection, and only 44.1% of

flows allow three watchdogs per forwarder.
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4.6 Entropy Defense Overhead Analysis

We provide analysis of the overhead in terms of computation and communication

of our proposed defenses attacks. The defense design targeted low overhead to ensure

practical use of such defenses, and we are able to provide greater details for this lower

overhead here.

4.6.1 Computation Overhead

The originator of a BCP in UBP must compute a null space checksum and a

signature for the BCP. The following benchmarked time values are performed on

general commodity hardware1. As noted earlier in Section 4.4.3, creating a null

space checksum requires the solution to a system of R(Vi(t)) equations and R(Vi(t))

unknowns where R(Vi(t)) < n. Solving an n by n system of equations requires

roughly 0.4 ms (where n = 32 and a symbol is 1 byte), which is the largest system

of equations that may have to be solved. A single DSA sign requires roughly 1 ms

of computation. Thus, overall, the originator of a BCP requires roughly 1.4 ms of

computational overhead on general commodity hardware.

Nodes receiving a BCP in UBP must verify the signatures attached to these pack-

ets. Verifying a signature requires roughly 1.1 ms of computation. The reception of a

BCP message requires a check of the null space checksum that was received which is

simply a matrix multiplication. The computational time of a matrix multiplication

on the coding headers of a coding buffer is negligible.

4.6.2 Communication Overhead

The communication overhead in UBP are the BCPs that are sent using reliable

unicast due to our strategy of finding the single upstream path that the attacker is

on. This communication overhead is quite small as the BCPs are small due to our

12.4Ghz processor and OpenSSL library for DSA signature computations
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use of checksums. Thus, we focus on the communication overhead of BM as it relies

heavily on reliable multicasts to deliver header information reliably whenever a coded

packet broadcast occurs.

Ensuring reliability on the multicast requires overhead in terms of resending the

packet until each destination has received the message. Previous work exists on

sending large messages with reliable multicast at the link-layer [68]. However, their

key contribution is the use of forward error correction codes to break a large message

into several small messages. These small messages are easier to receive since the

probability of packet delivery is higher for smaller messages. Thus, the recipients

just need to receive any number of small messages to reconstruct the original large

message.

We reliably multicast much smaller messages that can be easily sent in one small

packet (40 bytes). Thus, breaking the small message into even smaller messages will

negate any performance improvements since each message has overhead of sending

link-layer headers as well as physical layer overhead. Thus, we propose to send the

small message multiple times until all receivers obtain the message. We analyze the

number of times the message must be broadcast before each receiver obtains the

message given the packet delivery probabilities on each link. We do not present

analysis on the ACKs that must be sent from each receiver to the sender which would

need to be sent in a way to avoid congestion.

We can analyze the number of times a message must be sent given that it is sent

to N nodes over links with packet delivery probabilities of p1, p2, ..., pN . Let X be

a random variable that denotes the fewest number of times a message must be sent

such that all N receivers receive the message at least once. We aim to calculate

Pr(X = k), so we can consider each receiver as an independent geometric random
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Figure 4.8.: Given flows in the Roofnet topology, we show the communication over-
head of reliable multicasts in BM varying the number of watchdogs per node to 1,
2, and 3.

variable Yi which corresponds to the link state pi. We can express Pr(X ≤ k) in

terms of the independent geometric random variables as follows:

Pr(X ≤ k) = Pr

(
N⋂
i=1

Yi ≤ k

)
=

N∏
i=1

Pr(Yi ≤ k)

=
N∏
i=1

[
k∑
j=1

Pr(Yi = j)

]
=

N∏
i=1

[
k∑
j=1

(1− pi)j−1pi

]
With Pr(X ≤ k) we can obtain Pr(X = k) by Pr(X = k) = Pr(X ≤ k)− Pr(X ≤

k − 1). The function for Pr(X = k) allows us to compute the expected number

of broadcasts of a message such that each receiver obtains the message, E[X]. The

average overhead for reliably multicasting M bytes of data will be M ∗ E[X].

We use a heuristic for summed link qualities to determine the best watchdog

selection out of all possible watchdogs. Each forwarder has each downstream neighbor

and the watchdogs of each downstream neighbor as recipients of a DHP. Given the

link qualities from the topology and these sets of recipients we can apply the formula

for E[X] at each forwarder to obtain an average for a flow.

We use the Roofnet data to show the expected communication overhead when

sending DHPs in BM with various number of watchdogs per forwarder. We consider

the flows in Roofnet where an assignment of at least 3 watchdogs per nodes is possible

(541 flows or 44.1% of non-trival flows). Figure 4.8 presents a CDF (Cumulative

Distribution Function) for E[X] of DHP reliable multicasts in BM. As expected, the
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overhead increases with more watchdogs being assigned to each node due to more

recipients in each wireless multicast.

4.7 Summary

We show via simulations the impact of entropy attacks on the overall routing

of a wireless network coding system. We propose an effective defense against local

entropy attacks and show the difficulties in defending against a global entropy attack.

We propose two variations on a global entropy defense which differ in their defense

capabilities and overhead. We provide analysis to quantify the defense capabilities of

these global defense schemes.
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Algorithm 3 Reactive upstream buffer propagation protocol for node j in addition

to normal network coding actions

BCP : packet with contents 〈originator, null space checksum, sequence number,

originator signature〉

UAT : table with entries 〈upstream node, originator, null space checksum〉

SNT : table with entries 〈local sequence number, upstream node, upstream sequence

number〉

Received coded packet c from upstream

neighbor k with sequence number uk at

time t

1: if c is non-innovative then

2: BCP ← 〈j, sj(t), uk, SKj(sj(t))〉

3: reliable unicast(k,BCP )

4: add(〈k, j, sj(t)〉, UAT )

5: start timer(〈k, j, sj(t)〉)

6: else

7: remove(〈uj, ∗, ∗〉, SNT )

8: add(〈uj, k, uk〉, SNT )

9: if ∃〈k′, i, si(t)〉 ∈ UAT s.t. k′ = k

then

10: if c is innovative w.r.t. si(t)

then

11: remove(〈k, ∗, ∗〉, UAT )

Received BCP 〈i, si(t′), u′j, SKi(si(t′))〉 at

time t from node l

1: if SKi(si(t
′)) is correct then

2: if Vj(t
′) has innovative coded pack-

ets w.r.t si(t
′) then

3: c← create coded packet()

4: broadcast(〈c, uj〉)

5: 〈uj, k, uk〉 ← get(〈uj, ∗, ∗〉, SNT )

6: uj ← uj + 1

7: add(〈uj, k, uk〉, SNT )

8: else

9: 〈u′j, k, uk〉 ← get(〈u′j, ∗, ∗〉, SNT )

10: BCP ← 〈i, si(t′), uk, SKi(si(t′))〉

11: reliable unicast(k,BCP )

12: if k is not source then

13: add(〈k, i, si(t)〉, UAT )

14: start timer(〈k, i, si(t)〉)

Expired timer 〈k, i, si(t)〉 s.t. 〈k, i, si(t)〉 ∈

UAT

1: if no recent accusations with same

originator i then

2: accuse(k)
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Algorithm 4 Buffer monitoring protocol for node j in addition to normal network

coding actions

CHP : packet with 〈source, sequence number, coding header〉

CDP : packet with 〈source, sequence number, coded data〉

DDP : packet with 〈node dropping packet, packet source, packet sequence 〉

WBT : table entries 〈 watched node, source, sequence number, coding header 〉

W (x) : watchdog nodes for node x

D(x) : downstream neighbors for node x

PRF (x, y) : pseudo-random function which maps Z+ × Z+ to Fnq

Received CHP 〈i, ui,v〉 from upstream

neighbor i

1: if Received CDP 〈i, ui,x〉 then

2: Reconstruct coded packet c =

〈v,x〉 and store in buffer

3: else

4: DDP ← 〈j, i, ui〉

5: reliable multicast(W (j), DDP )

Broadcasting coded packet c =

〈v,x〉 created by random vector

PRF (j, uj)

1: CDP ← 〈j, uj,x〉

2: broadcast(CDP )

3: S ← W (j) ∪D(j) ∪
(⋃

i∈D(j)W (i)
)

4: CHP ← 〈j, uj,v〉

5: reliable multicast(S,CHP )

Received CHP 〈i, ui,v〉 from node i s.t.

j ∈ W (i)

1: initialize coding header matrix(Vi)

2: for all 〈i, ∗, ∗, v〉 in WBT do

3: add coding header(v,Vi)

4: if Vi ∗ PRF (i, ui) 6= v then

5: accuse(i)

Received CHP 〈k, uk,v〉 from node k s.t.

i ∈ D(k), j ∈ W (i)

1: add(〈i, k, uk,v〉,WBT )

Received DDP 〈i, k, uk〉 from node i s.t.

i ∈ D(k), i ∈ W (j)

1: if 〈i, k, uk, ∗〉 ∈ WBT then

2: remove(〈i, k, uk, ∗〉,WBT )

3: else

4: drop future receptions(〈k, uk, ∗〉)
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5 RELATED WORK

The related work for Chapters 2, 3, & 4 is discussed here. Section 5.1 contains

related work on diversity while the related work on network coding is grouped into

Section 5.2.

5.1 Network Diversity

We present relevant related work to our network diversity problem. To our knowl-

edge there is no other work studying the exact same problem, but there are several

works considering similar problems that differ in their network and adversarial mod-

els. First, we discuss a work that uses similar diversity assignment language, but

their model solves a different underlying problem. Second, we cover numerous re-

silient topology construction problems from graph theory and resilient key distribu-

tion problems from wireless networking. Both categories of work are similar to our

work as they target resilience goals with intelligent placement, but their attack mod-

els differ vastly from ours. Finally, we mention a path diversity work that proposes

methodologies to measure the diversity of an internet topology based on how many

geographically diverse paths exists between endpoints on the internet.

Diversity assignment. The work most similar to ours considers diversity as-

signment over nodes of a distributed system [69], but the goal of that work is to

prevent the spread of malware. In contrast, we assume that if a node of some variant

is compromised, then all nodes of that variant are also compromised, as the attacker

is not restricted to only using links within the network. To assign diversity to prevent

the spread of malware, the computation problem in [69] is different from ours as they

intend to minimize the number of links which contain two nodes of the same variant.

Thus, their underlying optimization problem for variant assignment is a version of
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the classic graph coloring algorithm. This problem is NP-Hard, so their work also

explores a heuristic solution which can scale to large networks.

Fault-tolerant topology construction. Existing work has introduced the con-

cept of the fault-diameter of a graph, which is a metric that bounds the diameter

of a graph given that a bounded number of nodes may fail [70–73]. For a network

topology, this means that if the number of failures is bounded, then the maximum

number of hops between any two correct nodes will not exceed the fault-diameter.

This translates to acceptable latency and overhead even in the worst case. Work in

this area has considered various ways to create graphs with good fault-diameters, but

these methods only consider unweighted graphs where edges are possible between any

pair of nodes. In our work, we assume the topology is chosen ahead of time and fixed

to ensure good link quality, and we do not need to add edges for our technique.

In wireless contexts, work has studied the allocation of energy among nodes in a

wireless ad hoc network to ensure high connectivity even when some bounded number

of nodes fail [74–76]. The work assumes that node positions are fixed and an amount

of energy can be assigned to each node. Higher energy at a node implies a larger

transmission range and more possible connections for that node. The optimization

problem is to find a power assignment to nodes which minimizes the global power

consumption while ensuring connectivity among correct nodes given a bounded num-

ber of nodes can fail. This optimization problem is studied in detail, providing a MIP

and exploring various approximation techniques.

WSN key distribution. Wireless Sensor Networks (WSNs) consist of resource

constrained devices which sense physical phenomena and deliver this information

over a wireless newtork to a base station. In this context, PKI and full pair-wise key

initialization are prohibitive due to the limitations of sensors. Thus, various work

proposes special key distributions, where secret information is shared among more

than a single pair of nodes [77–81]. This has similarities to diversity assignment as

the physical capture of a single node allows an attacker to utilize the secret information

on that node to attack links of other nodes which share similar secret information.
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Our work does fundamentally differ as we perform diversity assignment with the

complete topology information to maximize a resiliency metric where as WSN key

distribution work focuses on assigning initial secret information to nodes to maximize

that the potential of many links are secure. With the potential for many secure links,

a random wireless topology can be created and have certain resiliency properties.

Path diversity. Other work has studied the possible geographically diverse paths

of real-world topologies [82]. The assumptions of this work are that problems on to-

day’s internet are correlated geographically, so having multiple paths which contain

nodes that are geographically diverse will result in higher reliability. The main con-

tributions of this work are defining the metric of geographic diversity for a graph and

analyzing this value for realistic graphs. No assignment problem exists to date in this

context as diversity has been fixed by geographic location.

5.2 Byzantine Resilient Network Coding

We discuss relevant work related to ours on byzantine resilient network coding.

For relevant pollution defenses we consider prior work on polluted packet detection,

polluted packet correction, and polluter identification techniques. Our proposed pol-

lution defense protocol, Split Null Keys, falls under the category of polluted packet

detection. Then for relevant entropy attack and defense work we discuss two prior

mentions of such an attack along with relevant wireless security work. Although

entropy attacks are unique to network coding, its impact is similar to selective for-

warding while leveraging techniques similar to wormhole attacks to remain stealthy.

Detecting polluted packets at intermediate nodes. Several homomorphic

signature schemes proposed to provide a verification function for intermediate nodes

in the network. The works in [15–19] utilize cryptographic primitives that rely on the

discrete logarithm problem for security, which causes two major performance issues.

A lower bound is enforced on the symbol size, and a high computational overhead is

imposed by numerous modular exponentiations or elliptical curve operations. Work
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has been done to address the computational overhead of cryptographic pollution de-

fenses at intermediate nodes. Zhao et al. [83] proposes to speed up computations

by utilizing graphical processing units while Gkantsidis et al. [27] proposes to proba-

bilistically verify received blocks in peer-to-peer networks. Gennaro et al. [84] show

that the scheme [15] could use smaller coefficients near the source to reduce compu-

tational and communication overhead. The coefficients become larger with each hop

and eventually approach the overhead imposed by previous cryptographic schemes,

so topologies with many hops will still suffer.

Boneh et al. [20] propose the first homomorphic signature scheme over binary

field sizes by using lattice-based techniques. Their construction limits the number of

times signatures can be combined, and the key sizes are much larger than traditional

cryptographic constructions.

Agrawal et al. [21] present a homomorphic MAC that relies on pseudo-random

functions to overcome performance limitations. A work [22] shows an efficient way to

overcome a problem unique to homomorphic MACs known as tag pollution. However,

the underlying scheme still does not scale with the number of attackers in the network.

Dong et al. [23] propose a protocol for wireless networks that relies on checksums

being disseminated periodically throughout the network. Attackers cannot conduct

a forgery attack by observing a checksum because intermediate nodes verify received

packets against checksums that were created at the source at a later time than the

time when packets were received by intermediate nodes. The scheme has a lower

overhead than cryptographic defenses but causes coded packets to be delayed before

being verified.

Kehdi et al. [24] propose an algebraic based approach that uses null space proper-

ties to defend against pollution attacks. The scheme is suitable for large peer-to-peer

networks with path diversity but not applicable in wireless networks where such diver-

sity cannot be guaranteed. Our scheme is also based on null space properties but does

not rely on path diversity and has a small communication overhead per generation.
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Correcting polluted packets at receivers. The work [25] encodes redundant

information to reconstruct the valid coded packets at the receiver in the presence

of a byzantine adversary. However, the throughput of the network is dependent on

the adversary’s network capacity to the receiver, so an adversary with high network

capacity can potentially reduce the throughput of the network to zero. The work [26]

proposes to limit nodes’ network capacity by limiting the broadcasts of each node

to ensure the scheme [25] retains high throughput in the presence of adversaries.

Limiting broadcasts is inconsistent with practical wireless network coding systems.

Identifying polluting attackers. The work [85] uses the homomorphic MACs

[21] to determine the subspaces a node has received and the subspaces a node has

forwarded. This is sufficient information to determine if a node is a pollution attacker.

A work based on monitoring [60] is able to detect whether a node is polluting with

high probability given that nodes protect the headers of coded packets with error

correcting codes and that multiple honest watchdogs exist per node in the network.

The work [86] proposes a monitoring technique that requires source encoding where

the amount of overhead is dependent on the channel qualities in the network. The

adversary has a higher probability of being detected because it has to pollute many

packets to overcome the source encoding.

Entropy attacks. Entropy attacks have been considered for network coding sys-

tems, but defenses have been proposed only to mitigate the overhead of transferring

non-innovative coded packets [27, 28]. These works do not consider neither the im-

pact on routing nor the possibility of a global entropy attack. In [27], the authors

propose additional local coordination in a peer-to-peer network coding system prior

to obtaining a coded packet to ensure it is innovative. The authors of [28] are con-

cerned with the additional computation required at a node to determine whether a

received coded packet is innovative or not. Their solution is to probabilistically check

the linear independence of a coded packet which ensures that non-innovative coded

packets are dropped immediately using minor computation.
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Selective forwarding attacks. Wireless mesh network security have considered

the effects of a byzantine adversary conducting a selective forwarding attack [62],

where a malicious node refuses to forward some packets it receives. Such an attack can

cause significant damage to network performance. Monitoring is a suitable solution

to detect selective forwarding in a wireless network [64]. Nodes that neighbor an

attacker can detect when the attacker has received a packet and not forwarded the

packet. One of the defense schemes we propose against global entropy attacks also

relies on monitoring. Unlike in defenses against selective forwarding attacks, using

monitoring to defend against entropy attacks is more challenging because the attacker

in an entropy attack is still forwarding packets, but the neighboring nodes need more

information to determine that the attacker is coding non-innovative coded packets.

Wormhole attacks. The global entropy attack may use an out-of-band commu-

nication channel between nodes just as in a wormhole attack [87–89]. An upstream

and downstream node collude by using coded packets received at the downstream

node to create new coded packets at the upstream node. Existing defenses against

wormhole attacks focus on individual packets which cannot be applied to network

coding as packets are combined by forwarders. In [88], temporal and geographical

leashes are placed on packets to ensure they are correctly forwarded through the net-

work. Such a technique cannot be applied to network coding since packets are coded

together and each forwarder creates new packets.
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6 CONCLUSION AND FUTURE WORK

The attackers we consider in this dissertation have significant power as they can

obtain compromising exploits for certain variants of a system. Additionally with a

compromise, the attacker has protocol knowledge and the ability to craft sophisticated

malicious routing actions. Today’s networks can easily fail given such attackers, and

these types of attackers will become more prevalent as our society continues to rely

on network infrastructure for our most critical services. This dissertation provides

novel techniques greatly improving the construction of resilient networks for critical

services.

Our network diversity efforts have filled a vital gap in research between creat-

ing diverse systems and providing network resilience through diversity. Through our

proposed techniques, networks can retain well-connected surviving portions of their

network despite the use of unknown compromising exploits against the network. We

were thorough in investigating the important aspects of such a problem by finding

appropriate computational solutions, optimizing for various networking goals, and

testing in conditions with erroneous compromise information. The network diver-

sity techniques outlined in this dissertation can immediately be applied to today’s

networks to greatly improve resilience.

For networks that must provide high performance data delivery that contain a sub-

set of malicious routers, we provide significant improvements in securing networking

coding protocols. We improve the state-of-the-art in terms of practical pollution de-

fenses and emphasize the importance of entropy attacks along with providing defense

techniques. We overcome these two most crucial hurdles when aiming to leverage

performance improvements of network coding in a byzantine environment. The pro-

posed pollution defense focuses practicality to ensure we still achieve performance

improvements despite the defense overhead. Our work on entropy attacks highlights
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the significant impact of such an attack on a network coding system which requires

some type of defense to deal with entropy attacks in a byzantine environment. We

provide novel defenses analyzing their effectiveness and overhead.

Future Network Diversity Work. There are two main directions to pursue

for the diversity work that fall into different disciplines of computer science. First,

a series of measurement studies could be performed identifying the effectiveness of

different types of vulnerabilities. Analyzing vulnerability databases could lead to some

understanding of how often compromising exploits are available for different systems

and whether these exploits could target multiple systems. Also, performing ethical

experiments with people to attain information as to the diversity of susceptibility

to coding vulnerabilities by distinct programming teams or susceptibility to social

engineering attacks. Second, a theoretical investigation could be performed to better

understand the hardness of the diversity assignment problems. Ideally it should be

possible to provide positive and negative approximation results. There is hope for this

direction as the problem has commonalities to disjoint Steiner tree packing problems.

Future Byzantine Resilient Network Coding Work. The core future work

involves practical implementation, deployment, and testing under malicious settings.

Such work answers many vital questions before widespread adoption of our techniques.

We provide simulation and analytical evidence of low overhead which implies high

network performance. However, there are commonly extraneous factors which are

not easily anticipated or captured through simulation and analysis that could play

an important role in performance. For a holistic test of performance under attack it

is insightful to observe performance where a subset of malicious routers perform both

entropy and pollution attacks.
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