Secure Spread: An Integrated Architecture for
Secure Group Communication

Yair Amir, Member, IEEECristina Nita-RotaruMember, IEEE Jonathan StantoMember, IEEE,
and Gene TsudikMember, IEEE

Abstract— Group communication systems are high-availability Since many applications are expected to run over the
distributed systems providing reliable and ordered messag Internet, security becomes a real necessity. We note theat ev
delivery as well as a membership service to group-oriented ¢q 5pplications running in local area networks, particyia
applications. Many such systems are built using a distribued . ial . t ity i ired t
client-server architecture where a relatively small set ofservers In cqmmeraa environments, security I1s require .O gnsure
— sharing information about the groups in the system — provi¢ restricted access to data and to protect communication ac-
service to numerous clients. cording to regulations and hierarchical structures spetifi

In this work, we show how group communication systems can an organization. Although not an independent service,ritgcu
be enhanced with security services without sacrificing robstness is an enabling feature without which the actual end-sesvice

and performance. More specifically, we propose several inte . .
grated security architectures for distributed client-sewer group cannot be trusted or relied upon. To this end, the research

communication systems. In an integrated architecture, serity ~community has invested a lot of effort in investigating and
services are implemented in servers, in contrast to a layece developing effective and efficient security services. Nwone
architecture where the same services are implemented in elits. a|gorithm3, protoc0|5, frameworks and p0||Cy |anguaga$ha
We discuss performance and accompanying trust issues of €8¢ paan developed to provide security services in point-tiotpo
proposed architecture and present experimental results tt or group-based communication models. However, there has
demonstrate the superior scalability of an integrated arclitecture. ¢ - - v
not been enough research into the integration of secuiGty-te
nigues into distributed systems, while maintaining a reabte
level of performance.
This work tries to fill this gap, by showing how high-
|. INTRODUCTION availability systems (such as group communication systems
BIQUITOUS information access and communicatiogan be enhanced with security services without sacrificing
have become essential to everyday life, global busineggbustness and performance.
and national security. Activities, including personal,nco
mercial and international financial transactions, stugyamd A. Group Communication Systems
teaching, shopping for goods or managing modern battlefield Group communication systems (GCS) are distributed mes-
have fundamentally changed over the last decade as a résulffying systems that enable efficient communication between
the expanding capabilities of computers and networks. Mogtset of processes logically organized in groups. Processes
such activities are supported by distributed applicatioh&h, communicate via multicast in an asynchronous environment
in turn, increasingly rely on messaging systems to provigghere failures can occur. More specifically, a GCS provides
secure and uninterrupted service within acceptable thoug o services: group membership as well as reliable and
and latency parameters. This is difficult to guarantee inma-Co orgered message delivery. The membership service provides
plex network environment that is susceptible to a multitafle 5| members of a group with information about the list of
human and/or electronic threats, especially, as netwoakl® cyrrently connected and alive group membgrand notifies
have become more sophisticated and harder to contain. group members about every group change. A group can change
A distributed messaging system is essentially an abstracteor several reasons. In an idealized fault-free settingyange
layer built on top of an underlying network. It providesan be caused by members voluntarily joining or leaving
distributed applications with: (1) services not availablem the group. In a more realistic environment, faults can accur
the native network, e.g., security, ordered message dlive, g processes can become disconnected or simply crash and
or (2) services that are enhanced, e.g., higher availgbilihetwork partitions can prevent members from communicating
improved reliable delivery. Group communication systeMgyhen faults are healed, group members can communicate

overlay networks, and middleware are all examples of megqain. All the above events can trigger corresponding cbgng
saging systems serving as infrastructure for applicatisnsh iy group membership.

as: web clu_sters_, replicated databases, scalable chate®erv The core of GCS is in achieving agreement between multi-
and streaming video. ple participants about group membership views and about the
This work was supported by grant F30602-00-2-0526 from tiefelse order of messages to be delivered. Many agreement protocols

Advanced Research Projects Agency (DARPA). were proved to have no solution in asynchronous systems
A preliminary version of this paper was presented, in parDISCEX Il
[1]. 1This list is often referred to as dew.

Index Terms— Protocol architecture (C.2.2.b) and Distributed
applications (C.2.4.b)

with failures [2]. Practical GCS-s overcome the problem by There are two basic architectural approaches to providing

using time-out based failure detection to sense netwomdk (dsecurity services in a client-server GCS. The first approach

)connectivity and process faults. One risk of this approach (referred to as as th&yered architecturg places security

that alive and connected members communicating over higlervices in a client library layered on top of the GCS client

delay links, can be excluded from the group membership.library. The second approach (referred to as itegrated

the network is stable, GCS membership reflects the curmgnt krchitecturg entails housing some (or all) security services at

of connected and alive group members. the servers in order to obtain a more scalable design.
Membership and message delivery services were formalized

in two models: Virtual Synchrony [3] (VS) and Extended

Virtual Synchrony [4] (EVS). The main difference betweefs- New Contributions

the two models has to do with the relation between the viewstha main goal of this work is to investigate scalable

in which messages are sent and delivered. _ solutions for securing GCS-s that do not result in the severe
GCS-s have been built around a number of different a§egradation of performance and preserve the fault-toberan
chltectu_ral models,_such as, peer-to-peer libraries, 23-or properties. In particular, we focus on securing Spread 47],
level middleware hierarchies, modular protocol stacks) aigscg resilient to process crashes and network partitions.
client-server. To improve performance, modern GCS-S USe ary ¢ this work into context, we briefly outline our earlier
client- server architecture where expensive distributedt p o¢0rts. Some of our previous results [8] demonstrate how au
tocol_s are run between a .set Of, SEIVers, Where egch SElhehtication and access control for a client-server GCSbean
provides services to multiple clients. In this architeeiur oficjently addressed. The framework specified that clients
the %I'?rl‘t merr?bershlp SEIVICce 1S _IrrTllpltirTented a_sha” Il'ghé'uthenticated when connecting to a server, while accessaton
weight” layer that communicates with a “heavy-weight” layey, 4.5 resources is enforced by the local server. Another
asynchronously using a FIFO buffer. In such a model, 8pcent work focused on designing a robust contributory grou

application.usin.g the _GCS as its infrastructure, will linkhw key agreement [9], [10]. In the present work, complimentary
the GCS client library in order to get access to the membprsl?b previous work, we propose scalable and efficient secure

service and ordered/reliable message delivery providetthdy architectures for Spread, focusing on providing authetita,

SEIVers. data confidentiality and data integrity. More specificatiyr
contributions are:

B. Security Services for Group Communication Systems « Improved scalability of group key generation Con-

tributory key agreement protocols provide strong security
properties, which makes them appealing for secure group
communication. However, when used in a layered archi-
tecture, they scale poorly. We show how this limitation
can be overcome by using an integrated approach in a
light-weight/heavy-weight [11] group architecture, such
that the cost of key management is amortized over many
groups, while each group has its own unique key.

Group confidentiality support for EVS semantics: We
discuss the relationship between group communication
semantics and group confidentiality. Providing confiden-
tiality in systems supporting the VS model is an easier
task (than in EVS) since the semantics provides a form
of synchronization between the group membership and
data message delivery. The task is more challenging
in systems supporting the EVS model, however, such
systems have better performance; thus, it is desirable to
provide solutions for them as well.

Experimental evaluation and comparison of secure

Security is crucial for distributed and collaborative app!
tions that operate in a dynamic network environment and com-
municate over insecure networks, such as the InternetcBasi
security services needed in such a dynamic peer groupgettin
are largely the same as in point-to-point communicatiore Th
minimal set of security services that should be provided by
any GCS include:

« Client authentication authenticate a client when it re-
quests access to the GCS, e.g., when it connects to &
GCS server.

« Access controlcheck if a given client is authorized to
access system resources. Typical group resources that can
be controlled by access control methods are: joining a
group and sending or receiving messages to a group.

« Group key managemergenerate and maintain a shared
group key that can be used to bootstrap other group
services, i.e., data integrity and confidentiality.

« Integrity and data source authenticatiomprotect the
contents of the communication from being modified by *

an outsider. Data source authentication guarantees that
the message was generated by a trusted source and
protects against injections. Efficient integrity and data
authentication mechanisms (such as. HMAC [5]) require
a shared key between participants. For many protocols

group architectures: We proposed three variants of scal-
able integrated architectures for Spread, supporting both
VS and EVS semantics. We discuss the accompanying
trust issues and present experimental results that offer
insights into their scalability and practicality.

data integrity and authentication is an essential service. Roadmapthe rest of the paper is organized as follows. We
Confidentiality protect the contents of communicatiorsurvey notable prior work in Section Il. We then describe
both from eavesdropping as well as from modificatiorSpread and the group communication semantics it supports.
Symmetric encryption algorithms (such as AES [6]) reNext, we specify our security assumptions. We then overview

quire participants to share a secret key.

a layered architecture design and propose three variants of

the integrated security architecture for Spread. We demarotocols as composition of micro-protocols. Survivapitf
strate and discuss the improved scalability of our integratthe security services is enhanced by using redundancy for
architecture in Sections VI and VII, respectively. Finallye specific security services. For example, in [27], redunganc
summarize our work and discuss potential future researchdata confidentiality is obtained by encrypting data npleti
directions. times, each time using a different encryption algorithmisTh
approach is not appropriate for data-stream applicatidrerev
throughput is a concern.

Another toolkit that can be used to build secure group ori-

ESEARCH in group communication systems operatingnted applications is Enclaves [28]. It provides group mint
in a local area network (LAN) environment has beeind communication (both point-to-point and multicast) and

quite active in the last 15-20 years. Initially, high avhildy data confidentiality using a shared key. The group utilizes a
and fault tolerance were the main goals. This resulted in sysntralized key distribution scheme where a member of the
tems like ISIS [12], Transis [13], Horus [14], Totem [15],cn group (group leader) selects a new key every time the group
RMP [16]. These systems explored several different modeJsanges and securely distributes it to all members of theggro
of group communication such as Virtual Synchrony [3] angthe main drawback of this system is that it does not address
Extended Virtual Synchrony [4]. More recent work in this@refailure recovery when the leader of the group fails.
focuses on scaling group membership to wide area networksA collaborative application can have its own specific secu-
(WAN) [17], [18]. rity requirements and its own security policy. The Antigone

With the increased use of GCS-s over insecure openlicy [29] framework allows flexible application-level aup
networks, some research interests shifted to securing thescurity policies in a more relaxed model than the one uguall
systems. Research on securing group communication iy faiprovided by GCS-s. Policy flavors addressed by Antigone
new. The only implemented GCS-s that focus on security (include: re-keying, membership awareness, process ézilond
addition to ours) are: the SecureRing [19] system at UCSBgcess control. The system implements group rekeying mech-
the Horus/Ensemble systems at Cornell [20], [21], and tlisms in two flavors: session rekeying - all group members
Rampart system at AT&T [22]. receive a new key, and session key distribution - the session

At the core of any GCS is a membership protocol. Sonmeader transmits an existing session key. Both schemesmires
of the work in securing group communication focused osome problems: distributing the same key when the group
protecting the membership protocol in the presence of Byzathanges violates perfect forward secrecy, while the sessio
tine faults. This includes systems such as Rampart [22] arekeying mechanism — although able to detect the leader’'s
SecureRing [19]. Rampart builds its group multicast oveg-a sfailure — can not recover from it.
cure group membership protocol achieved via two-partyrgecu Unlike aforementioned systems, we focus on using con-
channels. SecureRing protects its low-level ring protdmpl tributory group key agreement as a building block for other
using digital signatures to authenticate each token trasssom security services in Spread [7]. Contributory key agregmen
and each data message received. Both systems exhibitdimipeotocols provide strong security properties. In partcul
performance since they use relatively costly protocols amiiey can guarantee that: (1) compromise of any subset of
make extensive use of public key cryptography. old group keys does not lead to compromise future group

In addition to the membership service, GCS-s provide rekeys; (2) compromise of any subset of group keys does not
able ordered message delivery within a group. To secure théad to compromise of previous group keys; and, (3) more
service, group members (senders) must be authenticated gederally, compromise of all-but-one group keys does rait le
both confidentiality and integrity of client data must be guato compromise of the one “missing” group key. Moreover,
anteed. One notable work in this area is the Horus/Ensembleen compromise of the members’ long-term secret keys does
work at Cornell [23], [20], [21]. Ensemble achieves datafzon not lead to compromise of any group keys. Our work inves-
dentiality by using a shared group key obtained via group kéigates trade-offs between security and group commuicati
distribution protocols. Although efficient, this methodedanot semantics support. Our secure GCS supports two strong group
provide certain security properties such as key indeperelemommunication semantics: Virtual Synchrony and Extended
and perfect forward secrecy. For authentication, Ensemd#s Virtual Synchrony.
the popular PGP [24] method. In addition, the system allows

Il. RELATED WORK

application-dependent trust models in the form of access lll. SPREAD
control lists which are treated as replicated data withinoaupg. HE work presented in this paper evolved from integrating
Recent research on Bimodal-Multicast, Gossip-based potto security services into the Spread GCS. In this section we

[25] and the Spinglass system has largely focused on increpgesent an overview of group communication semantics and

ing scalability and stability of reliable group communioat describe the Spread architecture.

services in more hostile environments — such as wide-ar@a anSpread [7] is a general-purpose GCS for wide- and local-

lossy networks — by providing probabilistic guaranteesuaboarea networks. It provides reliable and ordered delivempes-

delivery, reliability, and membership. sages (FIFO, causal, total ordering) as well as a membership
Some other approaches focus on building highly coservice.

figurable dynamic distributed protocols. Cactus [26] is a The system consists of a server and a client library linked

framework that allows the implementation of configurableith the application. The client and server membershigsvol

the model of light-weight and heavy-weight groups [30].sThi The Spread toolkit is publicly available and is being used by
architecture amortizes the cost of expensive distributed pseveral organizations in both research and productiomgstt
tocols, since such protocols are executed only by a relgtivdt supports cross-platform applications and has been gorte
small number of servers (as opposed to all clients). This wag several Unix platforms as well as to Windows and Java
a simple join or a leave of a client process translates intoeavironments.

single message, instead of a full-fledged membership change

Only network partitiong incur the heavy cost of a full-fledged IV. SECURITY ASSUMPTIONS

membership change. Our goals include protecting client data from eavesdrogpin
Spread offers a many-to-many communication paradighy passive adversaries and preventing impersonation aad da
where any group member can be both a sender and a receiyfigification/fabrication attacks by active adversaries.al-
Although designed to support small- to medium-size groupgersary in this context is anyone who is not a current group
it can accommodate a large number of collaborative sessiopember.
each spanning the Internet. Spread scales well with the aumb we do not consider insider attacks in this work. We ac-
of groups used by the application without imposing an¥nowledge that such threats are significant, especially, fo
overhead on network routers. the underlying group membership protocols; some of our on-
Spread supports two well-known group communication sgoing work focuses on this direction. However, in this paper
mantics, Virtual Synchrony (VS) [11], [31] and Extended-Virwe assume that each entity (client or server) can be directly
tual Synchrony (EVS) [4], [32]. (See [33] for a comprehessivauthenticated and each has an X.509v3 public key certificate
survey of group communication models). The VS service {fat allows it to sign messages.
provided by a client library implemented on top of the EVS The method of computing the group key is essential for
semantics. the security of the system. An ideal group key management
Both group semantics guarantee that all group members ggétocol should provideKey Independencéerfect Forward
the same set of messages between two sequential group mgatrecyand Backward/Forward Secrecynformally, key in-
bership events and that the order of messages requested byi#pendence means that a passive adversary who knows any
application (such as FIFO, Causal, or Total) is preservedyT proper subset of group keys cannot discover any future or
also guarantee that all messages are delivered in the same vprevious group key. Forward Secrecy guarantees that avpassi
However, there is a major difference in this last aspectiavhiadversary who knows a subset of old group keys cannot
VS guarantees that messages are delivered to all recipiadittover subsequent group keys, while Backward Secrecy
in the same view as the sending application thought it wgsiarantees that a passive adversary who knows a subset of
a member of at the time it sent the message (also knowngsup keys cannot discover preceding group keys. Perfect
Sending View Delivery), EVS guarantees that messages Wibrward Secrecy means that a compromise of a member's
be delivered in the same group view to connected memb@sag-term key cannot lead to the compromise of any short-
(also known as the Same View Delivery property). Note thaterm group keys. For a more precise definition of the above
in EVS, the delivery view can be different from the sendingsrminology, the reader is referred to [34], [35].
view. The key agreement protocol used in our design is the
The VS service is easier to program and understand, whde-called Tree-Based Group Diffie-Hellman [36] (TGDH)
the EVS service is more general and has better performangsetocol. It provides key independence and perfect forward
VS is slower, since it requires application-level acknagle secrecy; it was also proven secure with respect to passive
ments for every group change. Moreover, it requires closedtside (eavesdropping) adversaries [37]. In additiotivec
groups semantics, allowing only current members of thegrooutsider attacks — consisting of injecting, deleting, vlielg
to send messages to the group. EVS, in contrast, allows ol modifying protocol messages — that do not aim to cause
groups where non-member clients can send to a group. denial of service are prevented by the combined use of
When securing a GCS providing VS, it is both naturaimestamps, unique protocol message identifiers, and seque
and efficient to use a shared group key per view (securglymbers which identify the particular protocol execution.
refreshed upon each membership change) for data confidempersonation of group members is prevented by the use of
tiality. A message is guaranteed to be encrypted, deliverpdblic key signatures: every protocol message is signedsby i
and decrypted in the same group view and, hence, with teender and verified by all receivers. (Attacks aiming to eaus
same current key. This property does not hold in EVS, sindenial-of-service are not considered.)
a message can be sent in one view and delivered in another,
and also due to the support for open groups. Therefore, &/. SECURE GROUP COMMUNICATION ARCHITECTURE

one shared between the client and the server it connects Ojayered architecture and then describe the new integrated
and another — shared among the group of servers. The forlggthitecture and its variants.

is used to protect client-server communication, while #teer
— to protect server-server communication. A. Layered Architecture

2By a network partition we mean connectivity changes due toarking Our prewogs work proposed a Iayered architecture for
hardware, routing, or a machine crash. Spread, focusing on robustness and correctness of group key

\ Application \ Distribution (CKD) protocol. It is adapted to provide thevsa

v security properties as the other four key agreement proto-
Secure Spread Library (VS) éelﬁ Astireemem cols. The other four are key agreement protocols: Burmester
Client [« »|Key Agreement Selector|« oe(/:-\IIO:rithm1 Desmedt (BD) [40], Steer et al. (STR) [41], Group Diffie-
A%rsgi’::”‘m o Hellman (GDH) [35] and Tree-Based Group Diffie-Hellman
i (TGDH) [38]. Each of the latter four protocols are based
: : : on various group extensions of the well-known (2-party)
| Spread (Flush) Library (VS) | "M‘Co”ec"m Diffie-Hellman key exchange [42] and provide similar setyuri
' Algorithm 1 properties: key independence and perfect forward secrecy.
‘ Spread Server (EVS) ‘ .
|
Network H B. Integrated Architecture

Early group communication systems were implemented as
Fig. 1. A Layered Architecture for Spread libraries, which means that all distributed protocols weee-
formed between all clients, per group. A substantial ineeea
in performance and scalability was obtained by applying a
agreement. The result is a client library [9], [38] that pt®s cjient-server architecture to this model: a smaller nundfer
data confidentiality and integrity. The library is built avptof servers run the expensive distributed protocols and, in, tur
the VS Spread client library; it uses Spread as its commuRisrve numerous clients.
cation infrastructure and Cliques [39] group key managemen Group key agreement protocols are, by nature, distributed
library primitives for group key management. To make thgnd represent the most expensive security building block.
present paper self-contained and facilitate the discossfo Therefore, to improve the performance of the system in
different architectures in Section VII, we briefly summarizsettings with multiple groups (or many clients) we propase t
the Iayered architecture. For further details, we refergb [amortize the cost of key management by p|acing the key agree_
[38]. ment protocols at the servers and having the servers generat
Figure 1 presents the layered architecture for Spread. ThRnt group keys in a “light-weight” manner. This follows
library has as main functionalities providing confidentjabf the integrated architecture model where security senéces
the data by encrypting/decrypting client data using a gro@pplemented at the server.
shared key and managing the shared key for each group irsince the server population is smaller and more stable
the system. A client that desires to communicate securelytffan that of clients, server-based key agreement is botérfas
required to connect to a server and then join a group befeigd less frequent. Specifically, the servers’ shared s&eget
proceeding with the communication. The library provides &g refreshed only when network connectivity changes, and
API interface very similar with the Spread interface allo@i not when some client group changes. This results in fewer
a client to connect/disconnect to a server, to join and leavesostly key refreshes in contrast to client-based key ageeém
group, and to send and receive messages. because network connectivity changes are far less frequent
At the core of Secure Spread is the Client Agreement Engitiean normal client group changes. Note that the sharedrserve
which operates as follows: upon every group membershigy can be vulnerable if it changes very infrequently and a
change, the Client Agreement Engine receives notificatioggcurity policy should impose additional refreshing ofieres,
from the membership service about the change. Then, thiggered, for example, by maximum elapsed time between
Client Agreement Engine initiates an instance of the growaiccessive key changes (time-out) or maximum volume of data
key agreement protocol, ensuring its correct executiorkiimga exchanged (data-out).
sure that the messages are sent to the correct destinatithes i Generating client group keys is much less costly in the
right order, and that all the members make consistent @essi integrated architecture, since, if no change occurs in the
with respect to installing the new secure membership). Wheervers configuration, the cost of generating a new key for
this protocol terminates, a secure group membership charggroup amounts to one keyed MAC (HMAC [5]) operation.
is delivered to the application and a new group key is readflyhen network connectivity does change (and so does the
for use. Applications are not allowed to send any messagaembership of the servers’ group), the group key sharedeoy th
while the key agreement protocol is executed. In additibe, tservers is refreshed using a full-blown group key agreement
library ensures that the VS semantics are preserved. protocol. For this, we use the TGDH [41] protocol because of
The computation of a group key is group-specific. A clients due to its good performance and strong security prageerti
can be a member of multiple groups, each group managindrhe use of encryption for bulk data confidentiality results
its shared key with its own key agreement protocol. A Keiyn decreased system throughput due to the extra consumption
Agreement Selector and an Encryption Selector modules afeCPU resources. Regardless of the location and partular
used to identify a group-specific key management and encryjf-the key management, bulk data encryption can be done
tion algorithms. The Client Agreement Module is the one thaly either clients or servers. In the following, we describe
manages the key agreement protocol for each group. three integrated architecture variants that trade off ygtmon
The layered architecture currently supports five key manest for complexity, overhead and group communication rhode
agement protocols. One of them implements centralized ksypport. We first discuss their different performance amdise
distribution and is referred to as the Centralized Group Keity guarantees and then compare them to a layered approach.

Application

Spread Library
(EVS)

| Client-Server Encryption |

i

Secure Spread
Server (EVS)

| Client-Server Encryption |¢

Servers 4_.| Servers Encryption Selectorl
Agreement

Engine

]

Encryption Collection

Algorithm 1

Algorithm n

<—>| Key Agreement Selector i<

Key Agreement
Collection

Algorithm 1

Algorithm m

Network \/¢

Fig. 2. A Three-Step Client-Server architecture for Spread

1) Three-Step Client-ServerThe most intuitive architec-
ture is one derived from the the client-server model of the

when the servers’ group membership is stable and while the
group communication membership protocol is not executing.
This allows the key agreement protocol to run with its normal
assumptions once the membership protocol completes, yet
prior to notifying the client applications about the change
Thus, applications do not experience any change in sensantic
or the APIs (such as a new key message) but do experience an
additional delay during each server membership changés (Th

is in order for the key agreement protocol to execute follai

the completion of the membership protocol.)

The servers’ membership protocol is secured by using
public key cryptography to encrypt and sign all membership
messages, since the shared key is not available during its
execution. The small number of messages sent during the
membership algorithm and their small size, ensures that the
overhead of public-private encryption can be tolerated.

The Three-Step Client-Server architecture allows indiaid

group communication system. The architecture can suppBficies for rekeying the server group key and the per-tlien
both VS and EVS semantics at the expense of decreased (3t K€YS, as each is handled separately.

to encryption) throughput. We refer to it atiree-Step Client-

Server

Once the master server group key is generated, the servers
communication is protected by encryption using a key de-

We note that the communication taking place in the systeifed from it. The default protocol to encrypt communicatio
can be classified in two logical communication channel@etween servers is Blowfish in CBC mode; however, the
client-server and intra-servers. The goal is to protectdttero SYSt€M Supports any encryption algorithmin the OpenSS)- [44
channels. Spread’s architecture uses a TCP connection wHBfRY: including AES [6], while integrity and authenttoan
a client connect remotely to a server. In this case, the b&¢¢ performe_d using HMAC-SHAL [5]. Two different shared
approach to protect the client-server communication isisg: K€y are derived, one used for encryption and one for the the
a standard two-party secure communication protocol, sschMAC computation. In addition, the system can be configured
SSL/TLS [43]. If a client connects to a server running on th® use only HMAC and no encryption.
same machine, Spread architecture uses IPC. In this case, nbhe total end-to-end cost of sending an encrypted data
data protection is needed and client-server communicagionmessage from one client to another (both are connected

not encrypted.

to the Spread server remotely) includes six encryption and

The intra-server communication channel is provided by @gcryption operations: client encrypts the message andssen
multicast protocol developed on top of UDP. In order t§ over SSL to the server; server decrypts it and then re-
provide confidentiality of this communication, a block agsh €ncrypts using the server group key; servers that receise th
encryption protocol based on a key shared by the servers ig'gssage decrypt it and then re-encrypt it again using SSL for

good solution.

the receiving client; finally, each receiving client dedsythe

Figure 2 presents such an architecture. The Servers Agré¥ssage.
ment Engine detects changes in the server group conngctivit Note that the receiving servers need to encrypt the message
and for each connectivity change performs a key managemg@parately for each remote client who needs to receive it.
protocol between servers. In addition, time-based or Haged This is potentially a large number since each server can
key refresh can be enforced. As mentioned above, we use $h@port aboutl, 000 client connections. Thus, if more than
TGDH [41] protocol for key management.

Servers can distinguish between communication comiﬂ@d on the server will increase linearly with each remote
from peer servers and communication from the clients, afgceiver, since each remote receiver receives the same mes-
therefore, use the appropriate key in order to encryptygicr Sage encrypted separately on its own SSL connection. Local

the information.

one receiver is connected remotely on the same server, the

receivers do not require client-server encryption. We tiodé

One of the challenges with integrating a key agreemeﬁveral_solutions.can be Qefined to decrease the number of
protocol into a group communication system is the intecaxti encryption operations, particularly for the server thaadseto .
between the former and the membership protocol. Until tif€crypt and re-encrypt all the messages under the SSL client
membership protocol completes, the key agreement protoBgi-wise keys. We discuss them in more details in Section
cannot run, since there is no fixed group of servers amo}@-
which to perform key agreement. While the membership If two clients (sender and receiver) are executing on the
protocol is running, the set of known servers may changenaggfme machine as the server that they connect to, then the
(referred to aszascaded membershjpnd basic communica- cost of encryption under the Three-Step Client Server model

tion services between them may become unavailable.

reduces to one encryption by the sending server and one

To cope with this issue, the group key is provided onigecryption by the receiving server.

| Application | | Application |

1 v
Secure Spread Encryption Collection fii?:fe (?g/fg?d [Ercrypton Sefecter J«| Encryption Collection
Library (VS) Encryption Selector [« Algorithm 1 v Algorithm 1
. i
| Spread (Flush) Library (VS) | 9 Secure Spread Server (EVS)
i | Group Keys Engine |<—>| EVS Fix Messages |¢ Key Ag,reeme“t
¥ Collection
Secure Spread Server (EVS) Key Agreement Algorithm 1
- i Servers Agreement Key A t
Group Keys Engine Collection Eng?ne N eySegI;i(te::en N
Algorithm 1 Algorithm m
Servers Agreement o Key Agreement | | | Network \4
Engine Selector
Network \/¢ Fig. 4. An Optimized EVS Architecture for Spread

Fig. 3. An Integrated VS architecture for Spread . L
view at a certain timé.

The group key for groug in view v, wherev is uniquely
identified byview_idg, is
2) Integrated VS:Although the Three-Step Client-Server Koo = HMAC(K, gl[view-idgy)
architecture presented above is relatively simple, itessff The shared server group key is computed in a manner
from decreased throughput due to encryption performed Rientical to that in the Three-Step Client-Server archites
servers. Therefore, it is not recommended when clients@tinnand can be refreshed as needed. The client group key is
remotely. Recall that we aim to design an architecture withanged whenever a group event (join, leave, etc.) occhies. T
reasonable performance, not only in key management, buit alew key is delivered within the secure membership message
in throughput. This can be achieved if encryption is pusleed ihforming the clients about the group change. All clientugo
the clients, which, in turn, requires client group keys. members receive the same key for the same membership as

. . . a result of the VS semantics. If a key change is required
We now describe a second variant of our architectur, y 9 q

Gecause of the security policy (not caused by any group
referred to adntegrated VS|t supports the VS group Com'membership change), the key refresh notification is dediver

mumcapon model and comb|_ne-s the advan.tage Of. 2 .Ie S an “artificial” group membership change. This is in order
expensive key management building block (by integrating it to preserve the semantic guarantees of VS stipulating that

It'T)e ser\/ler;)‘_WHh the tadlv?ntagtegf\fggryp_no_rr d(inet;]n teanci messages encrypted by a sender with a given key must be
lorary. In this aspect, ‘ntegrate 'S simitarto the hace received by everyone while they also perceive (have) theesam
architecture. The client groups are closed, i.e., a cliesds k,&% as their current key,

to be a member in order to send messages to the group. ncryption costs for Integrated VS consist of one encryptio

umn?irlféort]ﬁ(ej ?:oevr(z dthz:\?cLeitqel::ItrSrse c\lllvir;trgrcl)(:ps ;(eésér:g’:'ev\\/ﬁ% the sender and multiple decryptions, one for each receive
y y ag Re worst case is when all receivers are situated on the same

pg:g:g:gg Ey s;%zr%roxiﬁﬁéztt?rz\smﬁie'(f(l)';r;t Egoug Ir<eys jh%chine, whereas, the best case is when all receivers are
9 y " 9 y K€y agraen running on distinct machines. In the latter case, decryptio
protocols. Since the library operates in the VS model, in

imilar to the | d architect Secti VAoaperations take place in parallel.
manner similar to the layered architecture (see Sectior),V-) Optimized EVS:Out of the variants presented thus far,

a per-view shared key associated with the group can be use i N
to provide confidentiality. The key is refreshed by the serveon y Three-Step Client-Server supports the EVS model and

when the aroun view chanaes open groups. As discussed in Section I-A, EVS is faster,
group ges. thus, it is desirable to have a secure group communication

Figure 3 depicts the Integrated VS architecture. The Ssrvéystem supporting this model. The Three-Step Client-Serve
Agreement Engine (SAE) initiates a key agreement protocgrves this purpose, but incurs heavy encryption overhead
between the servers whenever it detects a change in seMBen clients connect remotely to servers.
group connectivity. The Group Keys Engine (GKE) generates,One way to alleviate the large number of encryption oper-
for each group, a shared key whenever the group membershigns is to have clients perform encryption by using a share
changes. In case of a network connectivity change, the SAEPR-View group key, in a manner similar to the Integrated VS
invoked first, followed by the GKE. The latter refreshes teg k architecture. However, unlike VS, EVS does not guarantae th
for each group that suffered changes in membership due t@lhmessages are delivered to receivers in the same view in
change in server connectivity. The new group key is attattedwhich they were sent. Therefore, there might be messages tha
the membership notification and delivered to the group.rEliegroup members will be unable to decrypt as they do not have
group keys are generated by the servers based on three:valugs _ _ -

This number is generated based on a timestamp, the identifi¢he

1) Server group shared I_(dys- 2) group name (uni.que within servers’ representative, and a counter that is incremeaveq time the group
the system), and 3) unique number that identifies the grothanges

the key used to encrypt that message in the first place. Our V1. EXPERIMENTAL RESULTS

next variant addresses this issue. _ In this section we present experimental results for the
In order to support EVS semantics and client messagg,p key management and data encryption building blocks.

encryption, we developed an architecture that relies oveser e experiments cover all architecture variants described

not only to generate client group keys, but also to “adjusBection v measured in a local-area and wide-area network

messages that are not encrypted with the current group kgyironments and show the superior scalability of an irstegt
Clients operate without any disruption since servers guega g chitecture.

that all messages delivered to the clients are encrypted wit
the current group key.
Figure 4 presents this variant, referred to @ptimized A~ Group Key Management
EVS The Servers Agreement Engine and Group Keys EngineWe now compare the cost of establishing a shared group key
perform key management of the servers’ shared secret ana layered architecture and in an integrated architecitoe
client group keys, respectively. The method of generatirgpsure a fair comparison we use for the layered architecture
client group keys is the same as in Integrated VS. The mdlre same key agreement protocol we use in designing the
change is the addition of the EVS-Fix-Messages module, thategrated architecture, TGDH [36]. The communication and
detects when a message for a certain group is encrypted witboaputation costs of the TGDH protocol are summarized in
key that is no longer valid. Each such message is decryptéd diable 1. More details about why TGDH is our protocol of
re-encrypted with the current group key before being dedisle choice can be found in [38].
to the clients. Clients, in turn, decrypt all group messagesWe used an experimental testbed consisting of a cluster of
normally. TGDH is used as the server group key agreemeéhirteen 667 MHz Pentium Ill dual-processor PCs running
protocol. Linux. Each machine runs a Spread server. Clients are uni-
The EVS-Fix-Messages module solves two problems: fiarmly distributed on the thirteen machines. Thereforereno
detects whenever a message is encrypted with the wrahgn one process can be running on a single machine (which
key and determines the correct key to use for encrypting tleefrequent in many collaborative applications). We présen
message. results both in local and wide area network. For the WAN
The first problem is addressed by having the sender incluelgperiments, machines were distributed at three sitesisJoh
in each message a uniqu€ey_id of the group key that Hopkins University (JHU), Maryland, University of Califoia
was used to encrypt it. Thig'ey_id is independently and at Irvine (UCI) and Information and Communications Univer-
randomly computed each time a new key is generated (it is ality (ICU), Korea.
distributed along with each new client group key). However, For the most common group changes, join and leave, the
since it does not provide integrity, but merely identifieg thcost of establishing a new group key is reduced to almost the
client group key,Key_id can be relatively short, e.g., 64 bits.cost of the group communication membership protocol, since
It is transported in the un-encrypted portion of the messatfee servers can compute a new group key without performing
header. any other key agreement protocol, just one HMAC operation
To detect messages encrypted with an “old” key, a senisrneeded per group change. The results for the experiments
stores each client group along with ifsey_id. Each server performed in a LAN setting, for join and leave are presented
also tags one key as the “current” key for each client grouin. Figure 5(a) and Figure 5(b). The results for the integfrate
The current key is the key that matches the last membershighitecture are for a VS group membership protocol. This
(or key refresh) delivered to the group members. Then, befds because the cost of the VS group membership protocol
delivering a message to a client, it checks if fiey_id on the represents the worst case: VS uses closed groups and it
message matches that of the current key. If so, the messegguires acknowledgments from each group member before
is immediately delivered. Otherwise, the message is déedypchanging the group membership. In the EVS case, the numbers
with the appropriate stored “old” key and re-encrypted wndéor the integrated architecture will be much smaller. The sa
the current key. Since the message stream delivered to easpect of the TGDH protocol is due to the heuristics used by
client is a reliable FIFO channel, the client eventuallyeieges TGDH to balance the tree. New members are always added to
the message in the same view that the server expects it tothe right-most leave as long as they do not increase the theigh
Accumulating old keys and& ey_ids ad infinitumis clearly of the tree. In this case, the new member will be added to the
not viable. Thus, old keys have to be periodically flushed byot and the cost of refreshing the key will be minimal (this
each server. Different expiration metrics can be used relihe corresponds to the drop in the saw). While the height inegas
each server individually or in concert: time-outs and keyso the cost of refreshing the key also increases, correspgratin
A time-out occurs when no message encrypted under a givemascending slope on the graph.
key has been received for a certain length of time. A key-outResults for join and leave in a WAN environment are
takes place when some pre-set maximum number of keys-pemesented in Figure 6. In this case the predominant coseis th
group is exceeded. Many combinations and variations on tb@mmunication cost, and over high-delay networks like the
theme are clearly possible. one we use for our experiments, extra communication rounds
The choice of a key expiration methodology can affect thean degrade the scalability significantly.
risk of a message being “indecipherable” even when the serve In Figure 5(c) and Figure 5(d) we present the cost of
in theory, could have kept the required key. establishing a secure membership for merge and partitism, a

TABLE |
COMMUNICATION AND COMPUTATION COST

[Event [Rounds| Messages| Unicast | Multicast [Exponentiations| Signatures| Verifications |
Join, merge 2 3 0 3 3h/2 2 3
Leave 1 1 0 1 3h/2 1 1
Partition h 2h 0 2h 3h h h

Join Leave
350 T T T T T T T T T 350 T T T T T T T T T
Layered Architecture - TGDH —+— Layered Architecture - TGDH —+—
Integrated Architecture ---x--- Integrated Architecture ---x---
300 B
250 4
g g 200 | 4
g g
E E
g g
= £ 150 |
100
50 -
X
0 e : : : ‘ ‘ 0 ; : ‘ ‘
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Group size (#members) Group size (#members)
(a) Join (b) Leave
Merge Partition
700 T T T T T 700 T T T T T
Layered Architecture - TGDH —— Layered Architecture - TGDH —+—
Integrated Architecture - TGDH ---x--- Integrated Architecture - TGDH ---x---
600 1 600 1
500 B 500 B
g 400 q g 400 q
E E
g g
£ 300 4 £ 300 4
200)//4/“/\// 200 - 4
100 & e 100 B
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Group size (#members) Group size (#members)
(c) Merge (d) Partition
Fig. 5. The cost of key agreement in LAN - layered architextus. integrated architecture
Join Leave
2500 T T T T T T T T T 2500 T T T T T T T T T
TGDH —+— TGDH —+—
Membership service ---x--- Membership service ---x---
2000 | 4 2000 | 4
_. 1500 | E _. 1500 | 4
5 5
2 2
2 2
E E
s s
E E
= 1000 |- R = 1000 |-
. o X KR s X x ~
. Vxxxxxrx%x et 26 KRR 2 3 KN 25 3 XK KK XKt X %*x9(,)@x,)(,xx*%x.x-xrx*x'*x"*'X’X'X'x~x‘****’X'X‘x-x*x’***’x’x o
500 | X ¢ 4 500 |- 3 4
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Group size (#members)

(a) Join

Group size (#members)

(b) Leave

Fig. 6. The cost of key agreement in WAN - layered architexis. integrated architecture

10

Merge Partition

350 350

" Layered Architecture - TGDH ——— " Layered Architecture - TGDH ———
Integrated Architecture - TGDH —--x-— Integrated Architecture - TGDH ~—x-—

300 300

250

250

200 200

Time (msec)
Time (msec)

150 - 150 -

100 - 100 -

50 50
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of groups (groups size is 13 members) Number of groups (groups size is 13 members)

(a) Merge (b) Partition

Fig. 7. The cost of key agreement in LAN - multiple groups

Throughput with multiple senders (Three-Step Client-Server)

in a LAN environment. Such a group event is triggered by a 10000 ‘ oo Mo Sep Ghemsenen
network connectivity change which requires a modification i 55522555:5“'55““8% i
the set of reachable servers, or by a server crash. In thés cas ey e
a new key needs to be computed by the servers, and only then s0000 |
the group keys are computed. In Figure 5(c) and Figure 5(d)
we present the cost of establishing a secure group mempershi
for a test scenario where the servers are partitioned inamalf
then brought back together. oo |7

As it can be seen in Figures 5(c) and 5(d) the cost of the key
management for the integrated architecture is slighthyhéig
than in the case of join and leave because of the cost of the O e
key agreement protocol performed between servers. However essage size (ytes)
since the number of servers is much smaller than the numb&r 9 Data throughput with varying number of senders andsage size
of clients, the impact of the key agreement protocol is less
significant. The cost of the secure membership merge de- o)
creases from about 220 milliseconds, to about 90 millisdsor@rchitecture, while it will take about 50 times less to pemio
where the size of the group after partition is 100 users, aHif Same operation for an integrated architecture.
from about 680 milliseconds to about 60 milliseconds for a
partition, where the size of the group before partition iswth
100 members.

The above results are for a scenario when only one groupAnother important building block in the architecture of se-
exists in the system. In practice, this is not the case. Wheure group communication is the encryption module. Figure 8
more than one group exists in the system and a change in giiesents our results for data throughput. Figure 8 (a) shows
servers’ configuration that affects more than one groupmgcuthe throughput achieved by an integrated architecture (i.e
the layered architecture performs a key agreement profocol Three-Step Client-Server) under different configuratiolseng
each of the existing groups affected by the change. For the54-bit encryption algorithm, Blowfish with HMAC-SHAL,
integrated architecture, there is only one (smaller sdedg) using a 128-bit encryption algorithm, AES also with HMAC-
agreement performed between servers, and then a numbeBldAAl, and finally, no encryption is used, just HMAC-SHA1
HMAC operations equal with the number of groups affectefdr integrity and source authentication. As expected, rgldi
by the change. Figure 7 shows the average cost of recomputiegurity services decreases the throughput of the systém, w
a shared key for all groups, when more than one group exi#te® most expensive configuration being the one using AES.
in the system. All the groups have the same number of clienls,is interesting to note the performance dip for messages
13. We chose this number, because this is also the numberafund 700 bytes that happens when messages can no longer
the servers in our configuration. Even in this favorable setipe packed into one network packet.
for the layered architecture (small size groups), the iraiegl In Figure 8 (b) we compare the throughput of an Integrated
architecture scales much better than the layered arahitectArchitecture (Three-Step Client-Server) with a Layerediy
when the number of groups in the system increases. Basedexture, in two encryption configurations, AES and Blowfish.
the results we present in Figure 7 we estimate that even witfe consider a scenario where clients connect to servers
a very small group size (13 in our case), it will take moreunning locally, so in the Three-Step Client-Server setup,
than 4 seconds to refresh the key for 200 groups in a layermmacryption is performed only between servers.

40000 /'

30000

Throughput (Kbits/sec)

10000 %

B. Data Encryption

11

Throughput as a function of message size Throughput as a function of message size

70000 T T T T T T 70000 T T T T T
Unsecure Spread —+— ecure Spread ——
H

Unst
Three-Step Client-Server (AES and HMAC) ---x-- Layered Architecture (AES and HMAC) -

.

Three-Step Clnt Server (Blowfish and HVAC) -~ x Three-Step Client-Server (AES and HMAC) e

60000 |- e-Step Client Server (HMAC) —a-- | 60000 | Layered Architecture (Blowfish and HMAC) &~
Three.Step Cllent-Server (Blowish and HMAC) -

50000 50000

40000 40000

30000 30000

Throughput (Kbits/sec)
Throughput (Kbits/sec)

20000 20000 |-

10000 (% 10000 [
% L]

0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message size (bytes) Message size (bytes)

(a) Integrated Architecture (b) Integrated vs. Layered Architecture

Fig. 8. Data throughput under varying encryption algorghamd security architectures

The throughput for the Three-Step Client-Server is less thaervices to a GCS. We compare them by investigating the
that of the throughput achieved in the Layered Architecturtbllowing aspects: trust, key management scalability,actpf
The major reason for this decrease is due to the fact thihe compromise of the shared secret, complexity, and yabilit
both headers and data are encrypted and the message deliiesfficiently support other group services.
protocol employed by our system can not detect if it needsThe layered architecture has the advantage that no trust
to process a message further or not, without first decryptiigg put into anything outside of the end user’s control with
it. We note that since the encryption operation takes plapespect to protecting the data generated by a client. Tkatcli
at the data link layer, the servers encrypt not only cliemieeds to trust the servers with respect to the membership
data, but also control information, so this model provides service and ordered and reliable delivery. The compronfise o
stronger service than the other two models. Both Integratadgroup key, does not affect the security of the rest of the
VS and Layered architecture have the same throughput simgeups in the system, since each group is running its own
encryption is performed by clients. protocol and computes its shared key independently of the

This experiment only used one sender and the server tbdter groups. In addition, this architecture is less comple
the sender was connected to was the bottleneck. In a case easier to develop. However, this model, due to the high
where several senders exist in the group and thereforeadeveecurity, but expensive key agreement protocols we used, ha
servers will send messages, this cost will be amortized laad timited scalability, to no more than 100 members for the best
throughput will increase considerably. The results preeseim performance key protocol.
Figure 9 demonstrate this behavior. Both in the Blowfish and The integrated architectures we proposed overcome the key
AES configuration a higher throughput is achieved when thefiganagement scalability problem by using the key agreement
are 5 senders in the system instead of 1. to compute a secret key shared by the servers, and thusguttin

We did not include results for the Three-Step Client Servefore trust in the servers. This is because the security of the
architecture when clients connect remotely, but from th@oups relies on the security of the servers shared key which
results in Figure 8 we can extrapolate that the achievgfused in generating the client group keys. If the serveeg’ k
throughput in this case will be much smaller, and therefore compromised, the confidentiality of the communication of
unacceptable. The Optimized EVS architecture throughghut wy|| the groups in the system is compromised, as opposed to
be similar to the Integrated VS throughput if no server menghe layered model where in order to compromise the confi-
bership occurs, and will degrade when membership changrstiality of all the groups in the system, an attacker needs
occur, since some messages will need to be decrypted a@ctompromise the shared key for each group. We note that
re-encrypted under new keys. The Three-Step Client-Serygthe case of the layered architecture, an attacker canrpert
architecture performance should be the worst in all cases. service availability by attacking the servers’ commurimat

An integrated architecture is more appropriate for prowdi
other security services such as client authentication upon

The layered architecture and each of the new proposed inégnnection and access control to perform group specific-oper
grated variants have benefits and limitations. In the falh@w ations. A security policy can be easily configured and erfdrc
we first compare the layered and integrated approaches #ydan administrator controlling a server configuration file.
then discuss the three variants of integrated architesture Another advantage of an integrated architecture vs. adayer

architecture involves the protection of the control infation

A. Layered Architecture vs. Integrated Architecture messages exchanged by the servers. If designed appropriate

In this section we compare a layered architecture approaam integrated architecture can provide this service based o
to an integrated architecture approach, when providingrigc the secret key shared between servers, while the layered

VIl. DISCUSSION

12

TABLE Il
SECURE GROUP COMMUNICATION ARCHITECTURES

Group Keys | Servers Key Encryption Group Comm. Model
Layered Architecture Client None Client-Clients VS
VS Integrated Architecture Server Yes Client-Clients VS
Three-Step Client-Server None Yes Client-Server, Server-Servelr VS and EVS
Optimized EVS Server Yes Client-Clients mostly EVS

architecture can not. Combinations of the two approaches aame encryption cost as the Integrated VS if the group
also possible. For example, the clients who do not trust theembership is stable. When membership changes occur and
servers will encrypt their data end-to-end, while the sexvethere are messages not delivered in the membership they were
will also provide either secure channels, or only integritgent in, four additional encryption/decryption operasiqrer
checks between themselves. message are performed, to decrypt the messages encrypted
Choosing the most appropriate architecture depends with an old key and re-encrypt them under the current key.
the desired scalability and trust guarantees. An intedrat€he encryption overhead incurred by the Three-Step Client-
approach scales better, but the security of all groupssrelie Server approach, even when clients connect locally, istarg
one key; a layered architecture scales poorly, but the ggcuthan that of Integrated VS. However, it provides a stronger
of a group is independent of the security of the rest of theervice since it also protects the information exchanged by

groups and gives more control to the client. the servers.
As mentioned in Section V-B.1 the cost of Three-
B. Integrated Architectures Variants Comparison Step Client-Server is quite high, when clients connect re-

As we discussed in Section V-B there is no one-size-fits-alotely. Possible solutions to decrease the number of encryp
architecture solution that will perform the best in all pbtes tion/decryption operations, use an asymmetric architecas
environments, under both VS and EVS group communicatié@llows: the sending client encrypts the message usingra pai
semantics. Therefore, we proposed three integrated acechitvise key and sends it (via SSL) to its server; the server
ture variants that trade off encryption cost for complexit@lecrypts and re-encrypts the message, each receivingr serve
overhead and group communication model support. In td€crypts and re-encrypts but re-encryption is done under a
section we compare them by focusing on the group comm@roup key (a key common for all clients, on that server,
nication model supported, design and implementation of tHat belong to the appropriate client-group, clients nezaind
key management building block (do they use client group kegi€crypt. The overhead of encryption is still 6 operationt bu
or not) and the place where the encryption and decryptiéf delivery, a server only performs one encryption instelad o
operations are performed (only between clients, only betweone for each client who is a group member.
servers, or between a client and a server).

Table Il summarizes their features. The Three-Step Client-
Server approach does not use client group keys, but requires
a client to share a key with the server it connects to. TheThe main focus of this work was designing a high-
approach is very appealing because it uses a less comgexformance security architecture for a client-serverugro
key management mechanism. However, it is expensive ¢ammunication system. In particular, we focused on desgni
encryption and decryption operations when clients connettsecurity architecture for Spread, under two well-known
to servers remotely. If clients connect to servers locdlig t group communication semantics: VS and EVS. Both models
is the best architecture since theoretically it only reesir Support network partitions and merges and present their par
one encryption/decryption of each message and it can eadigular challenges. Contributory key agreement protoadisn
protect not only client data, but also the control inforroati used in a layered architecture have limited scalability. We
exchanged by the servers. Note, that depending on the igyercame this by using an integrated approach that relies on
plementation, even when clients connect locally, more thgantributory group key management in a light-weight/heavy
one encryption/decryption of each message can take placevaight group architecture such that the cost of key man-
discussed in Section VI-B. This architecture supports ieth agement is amortized over many groups, while each group
VS and the EVS semantics. has its own unique key. The experimental results we present

Both the Integrated VS and the Optimized EVS archi@demonstrate the increased scalability of integrated ambres
tectures use client group keys generated by servers. @uer layered approaches, without a significant decrease in
experimental results in Section VI show that the scalgbilithroughput performance.
of the system is improved substantially with respect to the When designing an efficient architecture supporting the VS
layered architecture. model, we took advantage of the fact that VS provides a form

For all the integrated architectures the confidentialityhef of synchronization between the group membership changes
data ultimately relies on the secret shared by the servers. and data messages delivery. Our approach was to use of a

The smallest encryption overhead is exhibited by the Ishared group key per view, securely refreshed upon each mem-
tegrated VS approach. The Optimized EVS solution has thership change. Data confidentiality can be relativelylgasi

VIII. CONCLUSIONS

13

provided in a system supporting VS because the synchronigaj Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A cemuni-

tion between membership notifications and message delivery
guarantees that any message will be encrypted, deliverd an
decrypted in the same group view and, hence, with the samng

current key.

Although it provides a more efficient and relaxed modeﬂ15
EVS is more challenging when providing security services

cation sub-system for high availabilityDigest of Papers, The 22nd
International Symposium on Fault-Tolerant Computing &ystpp. 76—
84, 1992.

R. V. Renesse, K.Birman, and S. Maffeis, “Horus: A fldgilgroup
communication systemCommunications of the ACMol. 39, pp. 76—
83, April 1996.

] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agarwal, anP. Ciarfella,

“The Totem single-ring ordering and membership protocé\CM

because there is no synchronization between membership Transactions on Computer Systemsl. 13, pp. 311-342, November

notifications and data delivery to the clients. Howeveryehe

[16] B. Whetten, T. Montgomery, and S. Kaplan, “A high perf@ance

is shared knowledge about what was the application group" otally ordered multicast protocol,” iliheory and Practice in Distributed
membership when the message was generated (and also en-Systems, International Worksholpecture Notes in Computer Science,

crypted) and the group membership when the message
be delivered (and also decrypted). We provided also saistio
for handling security for systems supporting EVS, by using
information shared by the group communication servers tH&g
provide the membership and message ordering and delivery

services.

We proposed three variants of an integrated architectu#él

that trade off encryption cost for complexity and group

communication model support. We showed how both group

communication semantics could be supported in the propo$ed
architecture, discussed the accompanying trust issues and
presented experimental results that offered insights itsto [y

scalability and practicality.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

REFERENCES

Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik, “Sngl secure
group communication systems: Beyond peer-to-peerProceedings of
DISCEX3 (Washington, DC, USA), April 2003.

T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-BtGn the
impossibility of group membership.” in5t* ACM Symposium on
Principles of Distributed Computing (PODCpp. 322—-330, May 1996.
K. P. Birman and T. Joseph, “Exploiting virtual synchyoim distributed
systems,” in11th Annual Symposium on Operating Systems Pringiples
pp. 123-138, November 1987.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agardia
“Extended virtual synchrony,” ifProceedings of the IEEE 14th Interna-
tional Conference on Distributed Computing Systeprs 5665, |IEEE
Computer Society Press, Los Alamitos, CA, June 1994,

The Keyed-Hash Message Authentication Code (HMAGp. FIPS
198, National Institute for Standards and Technology (NJSA002.
http://csrc.nist.gov/publications/fips/index.html.

Advanced Encryption Standard (AES) No. FIPS 197, Na-
tional Institute for Standards and Technology (NIST), 2001
http://csrc.nist.gov/encryption/aes/.

Y. Amir and J. Stanton, “The Spread wide area group corrioation
system,” Tech. Rep. 98-4, Johns Hopkins University, Ceoftéfetwork-
ing and Distributed Systems, 1998.

Y. Amir, C. Nita-Rotaru, and J. Stanton, “Framework fartlzentication
and access control of client-server group communicatistesys,” in3rd
International Workshop on Networked Group Communicatitondon,
UK), November 2001.

Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. StantomdG. Tsudik,
“Exploring robustness in group key agreement,"Hroceedings of the
21th IEEE International Conference on Distributed CompgtBystems,
pp. 399-408, IEEE Computer Society Press, April 2001.

Y. Amir, Y. Kim, C. Nita-Rotaru, J. Stanton, and G. Tskdl'Secure
group communication using robust contributory key agrestheEEE
Transactions on Parallel and Distributed Systems (TERD®&). 15,
pp. 468-480, May 2004.

A. Fekete, N. Lynch, and A. Shvartsman, “Specifying amsing a

partitionable group communication service,” Rmoceedings of the 16th [34]

annual ACM Symposium on Principles of Distributed Comm,tfSanta
Barbara, CA), pp. 53-62, August 1997.

K. P. Birman and R. V. RenessBeliable Distributed Computing with
the Isis Toolkit IEEE Computer Society Press, March 1994,

kg

[22]

[23]

[24]
[25]

[26]

[27]

(28]
[29]

[30]

[31]

(33]

[35]

p. 938, September 1994.

T. Anker, G. V. Chockler, D. Dolev, and I. Keidar, “Schla group
membership services for novel applications,” froceedings of the
Workshop on Networks in Distributed Computiri98.

I. Keidar, K. Marzullo, J. Sussman, and D. Dolev, “A clteserver
oriented algorithm for virtually synchronous group mensbgp in
WANSs,” Tech. Rep. CS99-623, Univ. of California, San Diedlaine
1999.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, HE SecureRing
protocols for securing group communication,” Rroceedings of the
IEEE 31st Hawaii International Conference on System Seignol. 3,
(Kona, Hawaii), pp. 317-326, January 1998.

0. Rodeh, K. Birman, and D. Dolev, “Using AVL trees foufatolerant
group key managementiternational Journal on Information Securjty
vol. 1, February 2002.

0. Rodeh, K. Birman, and D. Dolev, “The architecture gedformance
of security protocols in the Ensemble Group Communicatigat&n,”
ACM Transactions on Information and System Secuvity. 4, pp. 289—
319, August 2001.

M. K. Reiter, “Secure agreement protocols: reliablel atomic group
multicast in Rampart,” irProceedings of the 2nd ACM Conference on
Computer and Communications Securipp. 68—-80, ACM, November
1994.

0. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev, 4emble
security,” Tech. Rep. TR98-1703, Cornell University, Depeent of
Computer Science, September 1998.

P. ZimmermannThe Official PGP User's GuideMIT Press, 1995.

K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, andWinsky,
“Bimodal multicast,” Tech. Rep. TR99-1745, Department ah@uter
Science, Cornell University, May 1999.

R. D. S. Matti A. Hiltunen, “Adaptive distributed and ut-tolerant
systems,”International Journal of Computer Systems Science and En-
gineering vol. 11, pp. 125-133, September 1996.

M. A. Hiltunen, R. D. Schlichting, and C. Ugarte, “Entemg surviv-
ability of security services using redundancy,” Broceedings of The
International Conference on Dependable Systems and Netwdune
2001.

L. Gong, “Enclaves: Enabling secure collaboration rotle Internet,”
IEEE Journal on Selected Areas in Communicatjord. 15, pp. 567—
575, April 1997.

P. McDaniel, A. Prakash, and P. Honeyman, “Antigone: Axithle
framework for secure group communication,” Bmoceedings of the 8th
USENIX Security Symposiympp. 99-114, August 1999.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhargreliable
multicast framework for light-weight sessions and appica level
framing,” IEEE/ACM Transactions on Networkingol. 5, pp. 784-803,
December 1997.

J. Schultz, “Partitionable virtual synchrony usingtended virtual
synchrony,” Master’s thesis, Department of Computer SmerJohns
Hopkins University, January 2001.

] Y. Amir, Replication using Group Communication over a Partitioned

Network PhD thesis, Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel, 1995.

G. V. Chockler, I. Keidar, and R. Vitenberg, “Group comnica-
tion specifications: A comprehensive studfCM Computing Surveys
pp. 427-469, December 2001.

A. Menezes, P. van Oorschot, and S. Vanstddandbook of Applied
Cryptography CRC Press, 1996.

M. Steiner, G. Tsudik, and M. Waidner, “Key agreementdynamic
peer groups,1EEE Transactions on Parallel and Distributed Systems
August 2000.

[36]

[37]

(38]

[39]
[40]
[41]
[42]
[43]

[44]

Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-todat key
agreement for dynamic collaborative groups,” Rmoceedings of 7th
ACM Conference on Computer and Communications Secynity235—
244, ACM Press, November 2000.

Y. Kim, A. Perrig, and G. Tsudik, “Group key agreemenfia@ént in
communication,"[EEE Transactions on Computengol. 33, no. 7, 2004.
Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On the germance
of group key agreement protocols,” Proceedings of the 22nd IEEE
International Conference on Distributed Computing SystertViena,
Austria), June 2002.

Cliques Project team, “Cliques.” http://sconcelics.edu/cliques/.

M. Burmester and Y. Desmedt, “A secure and efficient ecerice key
distribution system,’Advances in Cryptology — EUROCRYPT, May
1994.

Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficit group key
agreement,” inProceedings of IFIP SEC 200June 2001.

W. Diffie and M. E. Hellman, “New directions in cryptogray,” IEEE
Trans. Inform. Theoryvol. IT-22, pp. 644-654, November 1976.
The TLS Protocol Version 1.0No. RFC2246, T. Dierks and C. Allen,
1999. http://www.fags.org/rfcs/rfc2246.html.

OpenSSL Project team, “Openssl,” May 1999. http://wapenssl.org/.

14

