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Abstract—In recent years, malware has proliferated into wire-
less LANs as these networks have grown in popularity and
prevalence. While the actual effects of malware-related network
traffic has been studied extensively in wired networks, analysis
has been limited in wireless networks.

In this work, we investigate a defense strategy based on optimal
control that quarantines malware by reducing the communication
range of mobile nodes. We characterize how such a solution
affects the performance of a wireless network through simula-
tions, leading to a better understanding and prediction of defense
protocols that reduce the speed of malware propagation within
wireless networks.
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I. I NTRODUCTION

There has been significant research on the topic of malwares
with a majority of the research focusing on propagation
modeling, detection, and application characterization. Malware
spreads through computer networks by searching, attacking,
and infecting remote computers automatically. Malware out-
breaks such as the Slammer [1] and the Code Red [2] worms in
the wired Internet have not only induced expenses in billions
but also in a wealth of research [1]–[5].

As the ubiquity of networks continues to grow, there is also
an increase in the number of pervasive devices using adhoc
communications, allowing direct local interaction between
devices in addition to maintaining links to centralized access
points. An increaing number of users utilize these devices
for a variety of applications such as file-sharing, VoIP etc.
Unfortunately, this increased mobility and connectivity creates
ground for another propagation vector for spreading malware.
Wireless networks differ from wired in the sense that resources
are quite limited so a carefully designed malware can cause
new forms of havoc. For example, the Zotob worm [6] uses
port 445 to infect its victims. Most enterprises block port
445 internally so the worm could have propagated via laptops
which were infected while outside the corporate network and
subsequently infected other machines after connecting to the
intranet. Another example was the Cabir worm [7], which hit
the mobile phones in June 2004. Its goal was to drain the
battery by excessively using the bluetooth scanning feature
present in a mobile phone.

In order to understand the seriousness of future worm
threats, there has been significant research into various Inter-
net worm models. In epidemiological research, a number of
deterministic and stochastic models have been explored that

capture worm spreading dynamics [8, 9]. One of the most
popular models is the SIR model developed by Kernack and
Kendrick that introduced the notion of compartments which
desribed the various phases of the course of an epidemic:
starting phase depicting slow growth,explosivegrowth and
remission. It was assumed that the contacts between the
members of a population are purely random. This makes it
suitable for application to a network of computers including
those connected through wireless.

In this work, we investigate a defense strategy based on
optimal control [10] that quarantines the malware by reducing
the communication range of mobile nodes. The intuition be-
hind the approach is to act in a way that reduces the frequency
of contact between the mobile nodes which in turn supresses
the spread of the infection. While this decreases the chance
of infection, it also decreases the network performance. Asit
is important for countermeasure design to be able to roughly
predict how the performance is affected with different malware
models, we propose an agent for ns-2 that models the behavior
of the malware as governed by theory. Later, we characterize
how a defense strategy such as the one proposed earlier affects
performance of a wireless network. This will lead to a better
understanding of defense protocols that would reduce the
speed of malware propagation within wireless networks.

The paper structure is as follows: We provide an overview
of the system model in Section II, the simulation model
in Section III, and present initial results in Section IV. We
conclude with ongoing and future work in Section V.

II. SYSTEM MODEL

We consider the deterministic compartmental SIR model to
characterize the worm in our system. In such a deterministic
model, individuals in the population are assigned to different
subgroups(compartments), each representing a specific stage
of the epidemic. The model assumes that the population size
in a compartment is differentiable with respect to time and that
the epidemic process is deterministic. The SIR model consid-
ers a fixed population with three compartments:susceptible:
S(t), infected:I(t) and recovered:R(t). At any given time,
the following represents the different types of individuals in
the system:

• nS(t) represents the number of individuals not yet in-
fected with the disease at timet(those susceptible to the
disease).



• nI(t) denotes the number of individuals who have been
infected with the disease and are capable of spreading the
disease to those in the susceptible category.

• nR(t) represents those individuals who have been in-
fected and then recovered from the disease. Those in this
category are not able to be infected again or to transmit
the infection to others.

Let the fraction of the infective nodes at timet be denoted
by I(t) i.e. I(t) = nI(t)/N . Likewise, letS(t) = nS(t)/N
and R(t) = nR(t)/N represent the fraction of susceptible
and recovered nodes at timet respectively. Kurtzet. al [11]
showed that if N is large, thenS(t) and I(t) converge
asymptotically to the solution of the following differential
equations:

Ṡ = −βIS (1)

İ = βIS − γI (2)

Ṙ = γI (3)

Here as well as in the rest of the paper,Ẋ represents
the derivative ofX with respect tot. Khouzaniet. al [10]
present a containment strategy based on power control that
assumes that the reception gain of the susceptible nodes is a
variable controlled by the system. Upon detection of malicious
behavior, the reception gain of the susceptible nodes can be
reduced. This effectively reduces the communication rangeof
the nodes to lessen the frequency of contacts between the
infectious and susceptible nodes. This reduces the propagation
rate of the infection, thus extending the time available for
recovering the infective nodes. Note that the communication
range depends on both the transmission and the reception gain
of two communicating nodes and reduction of any of these
gains reduces the communication range. The set of equations
(1), (2), (3) can then be written as follows:

Ṡ = −βuIS, S(0) = 1 − I0 (4)

İ = βuIS − γI, I(0) = I0 (5)

Ṙ = γI, R(0) = 0 (6)

whereu is the communication range of the nodes and is the
control variable for the system, which is bounded between a
maximum and minimum value:

umin ≤ u ≤ 1, umin ≥ 0 (7)

with the following state constraints:
0 ≤ S, I, R (8)

S + I + R = 1 (9)

The structural results(variationw.r.t. time) of the optimal com-
munication range,u as a function of time, that minimizes the
overall system cost which captures desired tradeoffs between
communication efficacy (and hence QoS) and containment of
the worm was obtained [10] for two cases:

1) Cost function is linear in bothu andI

J =

∫ T

t=0

(CI − u)dt (10)

2) Cost function is linear inI but non-linear inu

J =

∫ T

t=0

(CI +
1

u
)dt (11)

whereC determines the relative importance (hazard) of the
infection. In this work, we consider only the first case and
leave the second as part of our future work.

III. S IMULATION MODEL

Our simulation consists ofN wireless hosts that can reach
each other through a routing algorithm (AODV in our imple-
mentation). Nodes are assumed to move in a limited region
(of areaA) and according to therandom waypoint mobility
model. A node stays in one of the three states at any time:
susceptible, infectious, or recovered. A node is in “recovered”
state when it has been immunized against the infection. This
immunity is achieved when it comes into contact with a
security patchdeployed byhealer nodes. Further, we also
assume thathealer nodes cannot be infected and once nodes
have been recovered, they cannot be re-infected. Thus, the
state transition of any host can be:“susceptible-infectious-
recovered”or “susceptible-infectious”. When a node becomes
infected, it sends out a sequence of infection attempts during
its lifetime. At each infection attempt, the infected node scans
for neighbors within its communication range to infect and
sends out a packet to a random neighbor. If this packet reaches
a node, the node becomes infected. The set of neighbors will
decrease if the transmission range is lower. Note that the re-
ceiver can reduce the sender’s transmission range by lowering
its reception gain and vice versa. Thus, the transmission range
can be considered the control parameter used in minimizing a
given cost function. To understand the effects of congestion,
we allow susceptible nodes to select a destination (that is not
necessarily one-hop away), and transmit packets to it. Such
packets need longer to reach the destination as the packets may
need to go through multiple-hops. Thus, the delay experienced
by legitimate packets increases with the increase of infectious
packets. It should be observed that the recovery process is
not affected by the reduction in the transmission range (but
still depends on the patch distribution frequency or the total
number ofhealer nodes in the system along with the state
of transmission - whether thehealer nodes are unicasting or
broadcasting security patches).

Our simulation is structured into two separate parts for the
sake of simplicity. In the first part, we calculate the switching
time ts, which is defined as the time at which the nodes
change their communication range fromumax to umin or
vice versa (assuming linear dependence shown in Equation 10.
Note that for a simulation setting,ts does not have to exist
in which case the communication range remains unaltered.
Calculatingts involves solving the set of differential equations
governed by (4), (5), (6) for an optimalts to minimize the cost
functions (10) and (11) respectively. We achieve this using
AMPL [12] equipped with thesnopt solver [13]. AMPL is
an algebraic modeling language for non-linear optimization
problems. Later, this switching time is used in a wireless
simulation driven by ns-2 [14]. Atts the reception gain of
the nodes is appropriately adjusted. At the beginning of the



Fig. 1. Behavior of the different types of nodes as modeled inns-2

wireless simulation, several hosts are initially infectious and
the others are all susceptible. Whenever a node comes into the
communication range of an infected node, the worm attempts
to send out a sequence of infectious attempts. In addition,
an infected host will not change its infection behavior if it
is infected again by other copies of the worm. Susceptible
nodes continue to communicate with other nodes within their
communication range. Healer nodes remain unaffected by any
range controls applied and continue to patch infected nodes.
For the sake of brevity, the behavior of the different types of
nodes is depicted in Figure 1.

IV. RESULTS

We first investigate the linear dependence of the cost func-
tion on bothI andu. Khouzaniet. al [10] theoretically proved
that the optimal communication range for the cost function
in (10) is of the bang-bangform. As shown in Figure 2,
the communication range possesses only two possible values
umin andumax and switches abruptly between them at certain
switching times. We first proceed to verify their result using
AMPL andsnopt. The behavior ofu is shown in Figure 2. We
show the variation in the number ofsusceptible, infectedand
recoverednodes in the system when the communication range
is not considered. This provides us with basis for behavior we
can expect while simulating the scenario using ns-2. From
here on, we make it implicit that all experiments assume the
parameters shown in Table IV.

Figure 3(a) shows the case where range control is not
applied. As the model is deterministic, this behavior represents
the baseline for the rest of the experiments. In most cases,
the number of infected nodes will either be increasing or
decreasing. The key here is to note that there cannot exist a
steady state pointi.e., the number of infected nodes cannot
remain the same ast increases. To see why this is true,
consider Equation 5 written as a difference equation:

It+1 = It + βutItSt − γIt = It(1 + βutSt − γ) (12)

If we let ζ = 1+βuS−γ, this is clearly the epidemic threshold
for the model with constant population. The value ofζ decides
whether the infection is increasing or decreasing. Ifζ is 1,
then eitherIt = 0 or ζt+1 < ζt. If It = 0 indicates that
the infection ended. This case is obvious but if we consider
ζt+1 < ζt. ζ depends on three constants (β, γ, 1) and two state
variable(St, ut). If we look at the difference equation(discrete

representation) for Equation 4:

St+1 = St − βutItSt (13)

we can observe thatSt+1 decreases wheneverIt > 0 and
ut > 0. Thus if It > 0 andut > 0, ζt is decreasing for any
β > 0. This implies that there can never be a steady state
where ζt = 1 and It > 0. Further if It is increasing, it is
doing so at a diminishing rate. And ifIt is decreasing it is
doing so at an enhancing rate. Thus in a system withconstant
population, the infection will always disappear in the long run.

Figure 3(b) shows the case where 10% of the nodes are
infected but with range control applied. Initially, the commu-
nication range is set toumin(normalized to 0 in this case). This
prevents the nodes from communicating with each other. Be-
cause of this, the system undergoes no change. Att = ts = 87,
the communication range is set toumax(normalized to 1 in this
case) allowing the nodes start transmitting again. Figure 3(c)
shows the system behavior with range control applied to the
case where there are 20% infectious nodes. As expected the
slope of the infection curve increases after the nodes begin
their transmission at theswitching time.

Figure 4 shows the behavior of the system using ns-2.
Figure 4(a) shows the behavior when 10% of the nodes are
initially infected and range control is not applied. We believe
that the performace of our agent bears close resemblance
to the behavior obtained using usingAMPL and snopt and
that the minor differences are due to fact that the theoretical
model does not consider the network topology and the absolute
values of the speed of the nodes. Figure 4(b) and Figure 4(c)
shows the scenario with range control applied. The theory
assumes that before theswitching time, nodes can reduce their
communication range but still allows therecoveryprocess to
continue. However, in our model, we do not allow this because
when a node reduces its communication range, it will not be
able to receive any packets from thehealers. Also, it may
be necessary to bind the cost function to a suitable network
metric such as network throughput or node connectivity to get
a better picture of the effect of minimizing the cost function.
We defer this to our future work.

Fig. 2. Bang-bang structure
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Fig. 3. AMPL Simulation Results: All the figures show the variation of the number of nodes as thesimulation time advances. (a) Baseline case where the
communication range is unaltered and the system has 10% infectious nodes, (b) The system has 10% infectious nodes and thecommunication range is altered
at ts to minimize the cost function, (c) The system has 20% infectious nodes and the communication range is altered atts to minimize the cost function
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Fig. 4. ns-2 Simulation Results:All the figures show the variation of the number of nodes as thesimulation time advances. (a) Baseline case where the
communication range is unaltered and the system has 10% infectious nodes, (b) The system has 10% infectious nodes and thecommunication range is altered
at ts to minimize the cost function, (c) The system has 20% infectious nodes and the communication range is altered atts to minimize the cost function

Parameter Value
β 0.2
γ 0.02

total 100
infected variable

susceptible variable
recovered 0

Parameter Value
Power 0.1W

reception gain variable
healers variable

frequency 2.4GHz
field area 1000m x 1000m

node speed 20m/s
(a) (b)

TABLE I
PARAMETERS USED INAMPL AND NS-2 SIMULATIONS

V. FUTURE WORK AND CONCLUSION

We investigate a defense strategy based on optimal control
that quarantines malware by reducing the communication
range of mobile nodes. We experimentally verify prior the-
oretical work that proves the structural characteristics of the
communication range. We characterize how such a solution
behaves in the context of wireless networks through simula-
tions.

Our ongoing work studies the inherent tradeoff between the
communication range and packet loss rates. We plan to analyze
the effect of different communication patterns on the extent of
quarantining and the effectiveness of the mechanisms on data
delivery. As a next step, we also intend to propose a suitable
mechanism that lets each node independently decide when to
reduce its communication range based on certain heuristics.
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